Skip to content
Chapter

New Urban Freight Developments and Land Use

Publication: Handbook on Transport and Land Use: A Holistic Approach in an Age of Rapid Technological Change
Volume: Chapter 22
Pages: 383-397
Publication Date: 2023
Summary:

Urban freight denotes vehicle and commodity flows in an urban environment. These flows depend on a complex set of relationships among various stakeholders. In the last decades, urban freight has experienced an incredible pace of evolution, which has occurred due to various technological factors. One example is the ubiquity of internet access and the advance in information technology, leading to e-commerce adoption. Another is the development of algorithms to forecast demand, design and maintain supply chains and plan vehicle routes. In this chapter, we summarize critical changes in urban freight developments and land use. We highlight the interactions between passenger and freight travel, the recent shifts in freight flows and associated planning needs.

Authors: Dr. Giacomo Dalla Chiara, André Alho, Takanori Sakai
Recommended Citation:
Alho, André, Takanori Sakai, and Giacomo Dalla Chiara. "New urban freight developments and land use." Handbook on Transport and Land Use: A Holistic Approach in an Age of Rapid Technological Change (2023): 383.
Paper

Ecommerce and Environmental Justice in Metro Seattle

 
Download PDF  (8.55 MB)
Publication: Research in Transportation Economics
Volume: 103
Publication Date: 2023
Summary:

Urban distribution centers (UDCs) are opening at unprecedented rates to meet rising home delivery demand. The trend has raised concerns over the equity and environmental justice implications of ecommerce’s negative externalities. However, little research exists connecting UDC location to the concentration of urban freight-derived air pollution among marginalized populations.

Using spatial data of Amazon UDCs in metropolitan Seattle, this study quantifies the socio-spatial distribution of home delivery-related commercial vehicle kilometers traveled (VKT), corresponding air pollution, and explanatory factors. Results reveal that racial and income factors are relevant to criteria air pollutant exposure caused by home deliveries, due to tracts with majority people of color being closer in proximity to UDCs and highways. Tracts with majority people of color face the highest median concentration of delivery vehicle activity and emissions despite ordering less packages than white populations. While both cargo van and heavy-duty truck emissions disproportionately affect people of color, the socio-spatial distribution of truck emissions shows higher sensitivity to fluctuations in utilization.

Prioritizing environmental mitigation of freight activity further up the urban distribution chain in proximity to UDCs, therefore, would have an outsized impact in minimizing disparities in ecommerce’s negative externalities.

Recommended Citation:
Fried, T., Verma, R., & Goodchild, A. (2024). Ecommerce and Environmental Justice in Metro Seattle. Research in Transportation Economics, 103, 101382. https://doi.org/10.1016/j.retrec.2023.101382
White Paper

Biking the Goods: How North American Cities Can Prepare for and Promote Large-Scale Adoption of E-Cargo Bikes

 
Download PDF  (1.79 MB)
Publication Date: 2023
Summary:

The distribution of goods and services in North American cities has conventionally relied on diesel-powered internal combustion engine (ICE) vehicles. Recent developments in electromobility have provided an opportunity to reduce some of the negative externalities generated by urban logistics systems.

Cargo e-bikes — electric cycles specially designed for cargo transportation — represent an alternative environmentally friendly and safer mode for delivering goods and services in urban areas. However, lack of infrastructure, legal uncertainties, and a cultural and economic attachment to motorized vehicles has hindered their adoption. Cities play a crucial role in reducing these barriers and creating a leveled playing field where cargo e-bikes can be essential to urban logistics systems.

This paper aims to inform urban planners about what cargo e-bikes are, how they have been successfully deployed in North America to replace ICE vehicles, and identify actionable strategies cities can take to encourage their adoption while guaranteeing safety for all road users.

Gathering data and opinions from key public and private sector stakeholders and building on the expertise of the Urban Freight Lab, this paper identifies nine recommendations and 21 actions for urban planners across the following four main thematic areas:

  1. Infrastructure: cycling, parking infrastructure, and urban logistics hubs
  2. Policy and Regulation: e-bike law, safety regulation, and policies de-prioritizing vehicles
  3. Incentives: rebates and business subsidies
  4. Culture and Education: labor force training, educational programs, and community-driven adoption

Acknowledgements

The Urban Freight Lab acknowledges the following co-sponsors for financially supporting this research: Bosch eBike Systems, Fleet Cycles, Gazelle USA, Michelin North America, Inc., Net Zero Logistics, Pacific Northwest Transportation Consortium (PacTrans) Region 10, Seattle Department of Transportation, and Urban Arrow.

Technical contributions and guidance: Amazon, B-Line (Franklin Jones), Cascade Bicycle Club, Coaster Cycles, City of Boston, City of Portland, Downtown Seattle Business Association (Steve Walls), New York City Department of Transportation, People for Bikes (Ash Lovell), Portland Bureau of Transportation, University of Washington Mailing Services (Douglas Stevens), UPS,

Recommended Citation:
Dalla Chiara, G., Verma, R., Rula, K., Goodchild, A. (2023). Biking the Goods: How North American Cities Can Prepare for and Promote Large-Scale Adoption of Cargo e-Bikes. Urban Freight Lab, University of Washington.
Chapter

Success Factors for Urban Logistics Pilot Studies

Publication: The Routledge Handbook of Urban Logistics
Publication Date: 2023
Summary:

The last mile of delivery is undergoing major changes, experiencing new demand and new challenges. The rise in urban deliveries amid the societal impacts of the COVID-19 pandemic has dramatically affected urban logistics. The level of understanding is increasing as cities and companies pilot strategies that pave the way for efficient urban freight practices. Parcel lockers, for instance, have been shown to reduce delivery dwell times with such success that Denmark increased its pilot program of 2,000 lockers to 10,000 over the past two years. This chapter focuses on challenges faced during those pilots from technical, managerial and operational perspectives, and offers examples and lessons learned for those who are planning to design and/or run future pilot tests. On-site management proved to be critical for locker operations.

Recommended Citation:
Ranjbari, Andisheh & Goodchild, A & Guzy, E. (2023). Success Factors for Urban Logistics Pilot Studies. 10.4324/9781003241478-27.
Technical Report

Urban Goods Delivery Toolkit

Publication Date: 2020
Summary:

This Toolkit is designed to help transportation professionals and researchers gather key data needed to make the Final 50 Feet segment function as efficiently as possible, reducing both the time trucks park in load/unload spaces and the number of failed first delivery attempts.

In addition, the toolkit can help transportation planners, traffic engineers, freight system managers, parking and operations strategists, and researchers build a fundamental knowledge base for planning; managing parking operations; managing emergency management and response; updating traffic, land use and building codes; and modeling future scenarios and needs.

In short, the toolkit can be used to help cities meet the ever-increasing demand for trucks and other load/unload activities.

Recommended Citation:
Urban Freight Lab. (2020) Urban Goods Delivery Toolkit. https://depts.washington.edu/toolkit
Paper

A Policy-Sensitive Model of Parking Choice for Commercial Vehicles in Urban Areas

 
Download PDF  (1.69 MB)
Publication: Transportation Science
Publication Date: 2020
Summary:

Understanding factors that drive the parking choice of commercial vehicles at delivery stops in cities can enhance logistics operations and the management of freight parking infrastructure, mitigate illegal parking, and ultimately reduce traffic congestion. In this paper, we focus on this decision-making process at large urban freight traffic generators, such as retail malls and transit terminals, that attract a large share of urban commercial vehicle traffic. Existing literature on parking behavior modeling has focused on passenger vehicles. This paper presents a discrete choice model for commercial vehicle parking choice in urban areas. The model parameters were estimated by using detailed, real-world data on commercial vehicle parking choices collected in two commercial urban areas in Singapore. The model analyzes the effect of several variables on the parking behavior of commercial vehicle drivers, including the presence of congestion and queuing, attitudes toward illegal parking, and pricing (parking fees). The model was validated against real data and applied within a discrete-event simulation to test the economic and environmental impacts of several parking measures, including pricing strategies and parking enforcement.

Authors: Dr. Giacomo Dalla Chiara, Lynette Cheah, Carlos Lima Azevedo, Moshe E. Ben-Akiya
Recommended Citation:
Dalla Chiara, Giacomo and Cheah, Lynette and Azevedo, Carlos Lima and Ben-Akiva, Moshe E. (2020). A Policy-Sensitive Model of Parking Choice for Commercial Vehicles in Urban Areas. Transportation Science, 54(3), 606–630. https://doi.org/10.1287/trsc.2019.0970 
Student Thesis and Dissertations

Moving Goods to Consumers: Land Use Patterns, Logistics, and Emissions

Publication Date: 2014
Summary:

Worldwide, awareness has been raised about the dangers of growing greenhouse gas emissions. In the United States, transportation is a key contributor to greenhouse gas emissions. American and European researchers have identified a potential to reduce greenhouse gas emissions by replacing passenger vehicle travel with delivery service. These reductions are possible because, while delivery vehicles have higher rates of greenhouse gas emissions than private light-duty vehicles, the routing of delivery vehicles to customers is far more efficient than those customers traveling independently. In addition to lowering travel-associated greenhouse gas emissions, because of their more efficient routing and tendency to occur during off-peak hours, delivery services have the potential to reduce congestion. Thus, replacing passenger vehicle travel with delivery service provides opportunity to address global concerns – greenhouse gas emissions and congestion. While addressing the impact of transportation on greenhouse gas emissions is critical, transportation also produces significant levels of criteria pollutants, which impact the health of those in the immediate area. These impacts are of particular concern in urban areas, which due to their constrained land availability increase proximity of residents to the roadway network. In the United States, heavy vehicles (those typically used for deliveries) produce a disproportionate amount of NOx and particulate matter – heavy vehicles represent roughly 9% of vehicle miles travelled but produce nearly 50% of the NOx and PM10 from transportation. Researchers have noted that urban policies designed to address local concerns including air quality impacts and noise pollution – like time and size restrictions – have a tendency to increase global impacts, by increasing the number of vehicles on the road, by increasing the total VMT required, or by increasing the amount of CO2 generated. The work presented here is designed to determine whether replacing passenger vehicle travel with delivery service can address both concerns simultaneously. In other words, can replacing passenger travel with delivery service reduce congestion and CO2 emissions as well as selected criteria pollutants? Further, does the design of the delivery service impacts the results? Lastly, how do these impacts differ in rural versus urban land use patterns? This work models the amount of VMT, CO2, NOx, and PM10 generated by personal travel and delivery vehicles in a number of different development patterns and in a number of different scenarios, including various warehouse locations. In all scenarios, VMT is reduced through the use of delivery service, and in all scenarios, NOx and PM10 are lowest when passenger vehicles are used for the last mile of travel. The goods movement scheme that results in the lowest generation of CO2, however, varies by municipality. Regression models for each goods movement scheme and models that compare sets of goods movement schemes were developed. The most influential variables in all models were measures of roadway density and proximity of a service area to the regional warehouse. These results allow for a comparison of the impacts of greenhouse gas emissions in the form of CO2 to local criteria pollutants (NOx and PM10) for each scenario. These efforts will contribute to increased integration of goods movement in urban planning, inform policies designed to mitigate the impacts of goods movement vehicles, and provide insights into achieving sustainability targets, especially as online shopping and goods delivery becomes more prevalent.

Authors: Erica Wygonik
Recommended Citation:
Wygonic, Erica. 2014, Moving Goods to Consumers: Land Use Patterns, Logistics, and Emissions, University of Washington, Doctoral Dissertation.
Thesis: Array
Technical Report

Freight and Transit Lane Case Study

 
Download PDF  (3.57 MB)
Publication Date: 2020
Summary:

The Seattle Department of Transportation (SDOT) engaged the Urban Freight Lab at the Supply Chain Transportation and Logistics Center at the University of Washington to conduct research on the impacts of a freight and transit (FAT) lane that was implemented in January 2019 in Seattle. To improve freight mobility in the City of Seattle and realize the objectives included in the city’s Freight Master Plan (FMP), the FAT lane was opened upon the closing of the Alaskan Way Viaduct.

The objective of this study was therefore to evaluate the performance and utilization of the FAT lane. Street camera video recordings from two separate intersection locations were used for this research.

Vehicles were categorized into ten different groups, including drayage with container and drayage without container, to capture their different behavior. Drayage vehicles are vehicles transporting cargo to a warehouse or to another port. Human data reducers used street camera videos to count vehicles in those ten designated groups.

The results of the traffic volume analysis showed that transit vehicles chose the FAT lane over the general purpose lane at ratios of higher than 90 percent. By the time of day, transit vehicle volumes in the FAT lane followed a different pattern than freight vehicles. Transit vehicle volumes peaked around afternoon rush hours, but freight activity decreased during that same time. Some freight vehicles used the FAT lane, but their ratio in the FAT lane decreased when bus volumes increased. The ratio of unauthorized vehicles in the FAT lane increased during congestion.

Further analysis described in this report included a multinomial logistic regression model to estimate the factors influencing the choice of FAT lane over the regular lane. The results showed that lane choice was dependent on the day of week, time of day, vehicle type, and location features. Density, as a measure of congestion, was found to be statistically insignificant for the model.

Recommended Citation:
Urban Freight Lab (2020). Freight and Transit Lane Case Study. 
Student Thesis and Dissertations

Finding a (Food) Way: A GIS Modeling Approach to Quantifying Local Food Transportation Systems

Publication Date: 2017
Summary:

In recent years the focus on and prioritization of the notion of local food, food access and sustainability has been increasing throughout the U.S., especially in urban areas. The rising demand and growing preference for local produce in turn leads to changes in how we transport food. The supply chains found in urban areas are already complicated and costly, and as demand changes this poses a challenge if the local food movement is to be accommodated in our cities. A new initiative seeks to mitigate these challenges through the introduction of a mobile application that allows users to order local produce online. Logistics modeling was conducted as a case study to support this effort. The goal of the research was to be able to inform and support decision-making on the logistics to support agricultural development and equal food access. The research found that there is opportunity for improvement to how local food is accessed, and that these mobile applications have the possibility to address food accessibility, economic vitality and sustainability, with a lower negative impact on the transportation environment.

Recommended Citation:
Bovbjerg Alligood, Anna (2017). Finding a (Food) Way: A GIS Modeling Approach to Quantifying Local Food Transportation Systems, University of Washington Master's Degree Thesis.
Thesis: Array