Skip to content
Paper

Structuring a Definition of Resilience for the Freight Transportation System

 
Download PDF  (0.17 MB)
Publication: Transportation Research Record: Journal of the Transportation Research Board
Volume: 2097
Pages: 19-25
Publication Date: 2009
Summary:

This paper summarizes a broad literature review on system resilience. After these interpretations of resilience are considered, a definition of resilience in the context of freight transportation systems is provided. The definition of resilience offered here captures the interactions between managing organizations—namely, state departments of transportation, the infrastructure, and users—which is critical considering that the freight transportation system exists to support economic activity and production. A list of properties of freight transportation system resilience is outlined. These properties of resilience can contribute to the overall ability of the freight transportation system to recover from disruptions, whether exhibited at the infrastructure, managing organization, or user dimension. This contribution provides a framework that can serve as a starting point for future research, offering a shared language that promotes a more structured conversation about freight transportation resilience.

Authors: Dr. Anne Goodchild, Chilan Ta, Kelly Pitera
Recommended Citation:
Ta, Chilan. Anne V. Goodchild, and Kelly Pitera. "Structuring a definition of resilience for the freight transportation system." Transportation Research Record 2097, no. 1 (2009): 19-25.
Technical Report

Impacts of COVID-19 on Supply Chains

 
Download PDF  (0.82 MB)
Publication Date: 2020
Summary:

As of June 2020, the novel coronavirus disease (COVID-19) has infected more than eight million people worldwide. In response to the global pandemic, cities have been put under lockdown, closing non-essential businesses and banning group gatherings, limiting urban mobility, and issuing stay-at-home orders, while nations closed their borders.

During these times, logistics became more important than ever in guaranteeing the uninterrupted flow of goods to city residents. At the same time, the same supply chain providing the goods experienced profound disruptions. Documenting the impacts the COVID-19 outbreak had on individual organizations and their responses is an important research effort to better understand the resiliency of the supply chain.

The Urban Freight Lab, a structured workgroup of senior executives from major supply chains, supply chain related companies, and academic researchers from the University of Washington, carried out a survey to address two main questions:

  • What are the most common and significant impacts of the COVID-19 outbreak?
  • What short-term actions and long-terms plans are supply chains taking in response to the pandemic?

 

Recommended Citation:
Urban Freight Lab (2020). Impacts of COVID-19 on Supply Chains. 
Paper

Building Resilience into Freight Transportation Systems: Actions for State Departments of Transportation

 
Download PDF  (0.22 MB)
Publication: Transportation Research Record: Journal of the Transportation Research Board
Volume: 2168
Pages: 129-135
Publication Date: 2010
Summary:

The management of transportation systems for resilience has received significant attention in recent years. Resilience planning concerns the actions of an organization that reduce the consequences of a disruption to the system the organization manages. Little exploration has been made into the connections between resilience planning and the actions of a state department of transportation (DOT) that contribute to resilience of a freight transportation system. Conclusions are presented from collaborative research between the Washington State DOT Freight Systems Division (WSDOT FSD) and researchers at the University of Washington. Activities of the WSDOT FSD that contribute to resilience are identified, and one such activity undertaken by WSDOT to improve communication with system users is described. This and other activities can be undertaken by other DOTs that want to improve the resilience of their freight transportation systems at relatively low cost.

Authors: Dr. Anne GoodchildBarbara Ivanov, Chilan Ta
Recommended Citation:
Ta, Chilan, Anne V. Goodchild, and Barbara Ivanov. "Building Resilience into Freight Transportation Systems: Actions for State Departments of Transportation." Transportation Research Record 2168, no. 1 (2010): 129-135.
Technical Report

Freight Data from Intelligent Transportation System Devices

 
Download PDF  (0.86 MB)
Publication: Washington State Transportation Center (TRAC)
Publication Date: 2006
Summary:
As congestion increases, transportation agencies are seeking regional travel time data to determine exactly when, how, and where congestion affects freight mobility. Concurrently, a number of regional intelligent transportation systems (ITS) are incorporating various technologies to improve transportation system efficiency. This research explored the ability of these ITS devices to be used as tools for developing useful historical, and perhaps real-time, traffic flow information.
Regional transponder systems have required the installation of a series of readers at weigh stations in ports, along freeways, and at the Washington/British Columbia border. By linking data from these readers, it was possible to anonymously track individual, transponder-equipped trucks and to develop corridor-level travel time information. However, the research found that it is important to have an adequate number of data points between readers to identify non-congestion related stops. Another portion of this research tested five GPS devices in trucks. The research found that the GPS data transmitted by cellular technology from these vehicles can provide much of the facility performance information desired by roadway agencies. However, obtaining sufficient amounts of these data in a cost effective manner will be difficult. A third source of ITS data that was explored was WSDOT’s extensive loop-based freeway surveillance and control system.
The output from of each of the ITS devices analyzed in this research presented differing pictures (versions) of freight flow performance for the same stretch of roadway. In addition, ITS data often covered different (and non-contiguous) roadway segments and systems or geographic areas. The result of this wide amount of variety was an integration task that was far more complex then initially expected.
Overall, the study found that the integration of data from the entire range of ITS devices potentially offers both a more complete and more accurate overall description of freight and truck flows.

 

 

Authors: Dr. Ed McCormack, Mark Hallenbeck, Duane Wright, Jennifer Nee
Recommended Citation:
Hallenbeck, M. E., McCormack, E., Nee, J., & Wright, D. (2003). Freight Data from Intelligent Transportation System Devices (No. WA-RD 566.1,). The Center.
Paper

Evaluating the Use of Electronic Door Seals (E-Seals) on Shipping Containers

 
Download PDF  (0.67 MB)
Publication: International Journal of Applied Logistics
Volume: 1(4)
Pages: 13-20
Publication Date: 2010
Summary:

Electronic door seals (E-seals) were tested on shipping containers that traveled through ports, over borders, and on roadways. The findings showed that using these RFID devices could increase supply chain efficiency and improve the security of containerized cargo movements, particularly when E-seals replace common mechanical seals. Before the benefits of E-seals can be realized, several barriers must be addressed. A major problem has been a lack of frequency standards for E-seals, hindering their acceptability for global trade.  Routine use of E-seals would also require new processes that might slow their acceptance by the shipping industry. Disposable E-seals, which decrease industry concerns about costs and enforcement agency concerns about security by eliminating the need to recycle E-seals, are not common because they need to be manufactured in large quantities to be cost effective. Compatibility with existing highway systems could also promote E-seal acceptance, as containers could be tracked on roadways.

Authors: Dr. Ed McCormack, Mark Jensen, Al Hovde
Recommended Citation:
McCormack, E., Jensen, M., & Hovde, A. (2010). Evaluating the Use of Electronic Door Seals (E-Seals) on Shipping Containers. International Journal of Applied Logistics (IJAL), 1(4), 13-29.
Technical Report

Washington State Freight System Resiliency

 
Download PDF  (0.80 MB)
Publication: Transportation Northwest (TransNow)
Publication Date: 2009
Summary:

The economic viability and well-being of Washington State is significantly influenced by the freight transportation system serving the region. An increased understanding of the vulnerability of this freight system to natural disasters, weather, terrorist acts, work stoppages and other potential freight transportation disruptions will provide the State with the information necessary to assess the resiliency of the transportation system, and provide policy makers with the information required to improve it. This research project: a) Identifies a set of threats or categories of threats to be analyzed. b) Assesses the likelihood of each event occurring within certain time horizons. c) With the threats and their probabilities, analyzes the resiliency of the Washington transportation system.

Authors: Dr. Anne GoodchildDr. Ed McCormack, Eric Jessup, Derek Andreoli, Kelly Pitera, Chilan Ta
Recommended Citation:
Goodchild, A., Jessup, E., McCormack, E., Ta, C., Pitera, K., & Andreoli, D. (2009). Washington state freight system resiliency (No. TNW2009-01). Transportation Northwest (Organization).
Technical Report

Requirements for a Washington State Freight Simulation Model

 
Download PDF  (0.34 MB)
Publication: Transportation Northwest (TransNow)
Publication Date: 2009
Summary:

In the face of many risks of disruptions to our transportation system, including natural disasters, inclement weather, terrorist acts, work stoppages, and other potential transportation disruptions, it is imperative for freight transportation system partners to plan a transportation system that can recover quickly from disruption and to prevent long-term negative economic consequences to state and regional economies. In this report we specify the requirements of a statewide freight resiliency model. We recommend a geographic information system (GIS)-based, multi-modal Washington state freight transportation network that can be augmented with complete state-wide commodity flow data. With this, the state will be able to improve freight planning and infrastructure investment prioritization. We provide recommendations regarding the scope of and methodology for a statewide freight model that will be developed from the GIS network. This model can be used to estimate the vulnerability of different economic industry sectors to disruptions in the transportation system and the economic impacts of those disruptions with in the State of Washington. The team interviewed public sector users to understand what applications are of value in a statewide freight model and applied the lessons learned through building the GIS and conducting two case studies to make recommendations for future work.

Over the last ten years, the U.S. transportation infrastructure has suffered from significant disruptions: for example, the terrorist events of September 11, 2001, the West Coast lockout of dock labor union members, and roadway failures following Hurricane Katrina. There is certainly an impression that these events are more common than in the past and that they come with an increasing economic impact. At the same time, supply chain and transportation management techniques have created lean supply chains, and lack of infrastructure development has created more reliance on individual pieces or segments of the transportation network, such as the ports of Los Angeles and Long Beach and Washington States’ ports of Seattle and Tacoma. Disruptions, when they occur to essential pieces of the network, cause significant impacts. In particular, they cause significant damage to the economic system.

The relationship between infrastructure and economic activity, however, is not well understood. The development of a statewide freight model will allow WSDOT to better understand this relationship, and improve transportation system resilience.

Authors: Dr. Anne GoodchildDr. Ed McCormack, Eric Jessup
Recommended Citation:
Goodchild, A. , Jessup, E. , and McCormack, E. Requirements for a Washington State Freight Simulation Model. TNW2009-11. Transportation Northwest, University of Washington, 2009.
Technical Report

Development and Analysis of a GIS-Based Statewide Freight Data Flow Network

 
Download PDF  (4.92 MB)
Publication: Washington State Department of Transportation
Publication Date: 2009
Summary:
In the face of many risks of disruptions to our transportation system, this research improves WSDOT’s ability to manage the freight transportation system so that it minimizes the economic consequences of transportation disruptions.
Faced with a high probability that major disruptions to the transportation system will
harm the state’s economy, the Washington State Department of Transportation
(WSDOT), in partnership with Transportation Northwest (TransNow) commissioned
researchers at the University of Washington and Washington State University to
undertake freight resiliency research to:
  • Understand how disruptions of the state’s freight corridors change the way
    trucking companies and various freight-dependent industries route goods,
  • Plan to protect freight-dependent sectors that are at high risk from these disruptive
    events, and
  • Prioritize future transportation investments based on the risk of economic loss to
    the state
To accurately predict how companies will route shipments during a disruption,
this research developed the first statewide multimodal freight model for Washington
State. The model is a GIS-based portrayal of the state’s freight highway, arterial, rail,
waterway and intermodal network and can help the state prioritize strategies that protect industries most vulnerable to disruptions.
The report features two case studies showing the model’s capabilities: the potato growing and processing industry was chosen as a representative agricultural sector, and diesel fuel distribution for its importance to all industry sectors. The case studies are found in sections 5.2 and 5.3 in the report and show how the statewide freight model can:
  • Predict how shipments will be re-routed during disruptions, and
  • Analyze the level of resiliency in various industry sectors in Washington State
The two case studies document the fragility of the state’s potato growing and processing
sectors and its dependence on the I-90 corridor, while showing how the state’s diesel
delivery system is highly resilient and isn’t linked to I-90.
As origin-destination data for other freight-dependent sectors is added to the model,
WSDOT will be able to evaluate the impact of freight system disruptions on each of
them. This will improve WSDOT’s ability to develop optimal strategies for highway
closures, and prioritize improvements to the system based on the relative impact of the
disruption.
This research addressed several technical areas that would need to be resolved by any
organization building a state freight model. First, the researchers had to decide on the
level of spatial and temporal detail to include in the statewide GIS freight model. This
decision has significant consequences for data resolution requirements and results.
Including every road in Washington would have created a cumbersome model with a
large number of links that weren’t used. However, in order to analyze routing during a
disruption all possible connections must exist between origin and destination points in the model. While the team initially included only the core freight network in the model,
ultimately all road links were added to create complete network connectivity.
Second, as state- and corridor-level commodity flow data is practically non-existent, data
collection for the two case studies was resource intensive. Supply chain data is held by
various stakeholders and typically not listed on public websites, and it isn’t organized by
those stakeholders for use in a freight model. In most cases it’s difficult to assure data
quality. The team learned that the most difficult data to obtain is data on spatially or
temporally variable attributes, such as truck location and volume. So they developed a
method to estimate the importance of transportation links without commodity flow data.

Third, the freight model identified the shortest route, based on travel time, between any
origin and destination (O/D) pair in the state, and the shortest travel-time re-route for
each O/D pair after a disruption. The routing logic in the model is based on accepted
algorithms used by Google Maps and MapQuest. Phase III of the state’s freight
resiliency research was funded by WSDOT and will result in improved truck freight
routing logic for the model in 2011.
The two case studies showed how the state’s supply chains use infrastructure differently,
and that some supply chains have built flexibility into their operations and are resilient
while others are not, which leads to very different economic consequences. The results
of these case studies significantly contributed to WSDOT’s understanding of goods
movement and vulnerability to disruptions.
In the future, Washington State will need corridor-level commodity flow data to
implement the research findings and complete the state freight model. In 2009, the
National Cooperative Freight Research Program (NCFRP) funded development of new
methodology to collect and analyze sub-national commodity flow information. This
NCFRP project, funded at $500,000, will be completed in 2010 and provide a mechanism for states to accurately account for corridor-level commodity flows. If funds are available to implement the new methodology in Washington State, the state’s freight
model will use the information to map these existing origin destination commodity flows
onto the freight network, evaluate the number of re-routed commercial vehicles, and their increased reroute distance from any disruption. This will allow WSDOT to develop
prioritized plans for supply chain disruptions, and recommend improvements to the
system based on the economic impact of the disruption.
This report summarizes 1) the results from a thorough review of resilience literature and resilience practices within enterprises and organizations, 2) the development of a GIS-based statewide freight transportation network model, 3) the collection of detailed data regarding two important industries in Washington state, the distribution of potatoes and diesel fuel, and 4) analysis of the response of these industries to specific disruptions to the state transportation network.
The report also includes recommendations for improvements and additions to the GIS model that will further the state’s goals of understanding the relationship between infrastructure availability and economic activity, as well as recommendations for improvements to the statewide freight transportation model so that it can capture additional system complexity.
Authors: Dr. Anne GoodchildDr. Ed McCormack, Eric Jessup, Derik Andreoli, Kelly Pitera, Sunny Rose, Chilan Ta
Recommended Citation:
Goodchild, Anne V., Eric L. Jessup, Edward D. McCormack, Derik Andreoli, S Rose, Chilan Ta and Kelly Pitera. “Development and Analysis of a GIS-Based Statewide Freight Data Flow Network.” (2009).
Paper

Activity Modeling of Freight Flows in Washington State: Case Studies of the Resilience of Potato and Diesel Distribution Systems

 
Download PDF  (0.62 MB)
Publication Date: 2009
Summary:
This paper describes the development and use of a network model using publicly available industry data to analyze the resilience of two important Washington state industries. Modeling of freight activity in support of the potato and diesel industry in Washington state demonstrates how individual industries utilize the road network and how they are affected by a transportation disruption. We estimate the potato industry, which relies entirely on trucks for intra-state deliveries, generates about 50 cross-Cascade truck trips per day. Roughly 90 percent of the trucks deliver potatoes from processing facilities on the east side of the state to markets on the west side, while 10 percent carry fresh potatoes from the west to the east for processing. The coupled origins and destinations do not vary unless there is a disruption to the network. The diesel distribution system in Washington state also relies heavily on trucks, but only for the final segment of the logistics chain because both barge transport and pipelines are more cost effective modes. By necessity, trucks deliver from terminals to racks, but there is an established flexibility in these distribution operations as routes and travel distances regularly change because of variations in commodity price at each terminal and the presence of multiple terminals. As a consequence, we demonstrate that the diesel distribution system is much more resilient to roadway disruptions, especially those which occur along the cross-Cascades routes. These examples demonstrate the necessity of understanding industry practice as it relates to analyzing needed infrastructure and operational improvements to reduce economic impacts resulting from transportation disruptions.

 

 

Authors: Dr. Anne Goodchild, Sunny Rose, Derik Andreoli, Eric Jessup.
Recommended Citation:
Goodchild, Anne. Sunny Rose, Derik Andreoli, and Eric Jessup. "Activity Modeling of Freight Flows in Washington State: Case Studies of the Resilience of Potato and Diesel Distribution Systems." 
Technical Report

Developing a System for Computing and Reporting MAP-21 and Other Freight Performance Measures

 
Download PDF  (2.13 MB)
Publication: Washington State Transportation Center (TRAC)
Publication Date: 2015
Summary:

This report documents the use of the National Performance Monitoring Research Data Set (NPMRDS) for the computation of freight performance measures on Interstate highways in Washington state. The report documents the data availability and specific data quality issues identified with NPMRDS. It then describes a recommended initial set of quality assurance tests that are needed before WSDOT begins producing freight performance measures.

The report also documents the initial set of performance measures that can be produced with the NPMRDS and the specific steps required to do so. A subset of those metrics was tested using NPMRDS data, including delay and frequency of congestion, to illustrate how WSDOT could use the freight performance measures. Finally, recommendations and the next steps that WSDOT needs to take are discussed.

This report describes the outcome of the initial exploration of the National Performance Research Monitoring Data Set (NPMRDS), supplied by the Federal Highway Administration (FHWA) to state transportation agencies and metropolitan planning organizations for use in computing roadway performance measures.

The NPMRDS provides roadway performance data for the national highway system (NHS). The intent of the NPMRDS was to provide a travel time estimate for every 5-minute time interval (epoch) of the year for all roadway segments in the NHS. The NPMRDS data are derived from instantaneous vehicle probe speed data supplied by a variety of GPS devices carried by both trucks and cars. The data are supplied on a geographic information system (GIS) roadway network, which divides the NHS into directional road segments based on the Traffic Message Channel (TMC) standard.

The report describes the availability, attributes, quality, and limitations of the NPMRDS data on the Interstates in the state of Washington.

Based on the review of the NPMRDS data, this report recommends a set of performance metrics for WSDOT’s use that describe the travel conditions that trucks moving freight within the state experience. It describes specific steps for computing those measures. And it uses a subset of those measures produced with the NPMRDS to illustrate how WSDOT can use those measures in its reporting and decision-making procedures.

Recommended Citation:
Hallenbeck, Mark E., Ed McCormack, and Saravanya Sankarakumaraswamy. Developing a system for computing and reporting MAP-21 and other freight performance measures. No. WA-RD 844.1. Washington (State). Dept. of Transportation. Research Office, 2015.