Skip to content
Paper

Commercial Vehicle Parking in Downtown Seattle: Insights on the Battle for the Curb

 
Download PDF  (5.23 MB)
Publication: Transportation Research Record: Journal of the Transportation Research Board
Publication Date: 2019
Summary:

Rapid urban growth puts pressure on local governments to rethink how they manage street curb parking. Competition for space among road users and lack of adequate infrastructure force delivery drivers either to search for vacant spaces or to park in unsuitable areas, which negatively impacts road capacity and causes inconvenience to other users of the road.

The purpose of this paper is to advance research by providing data-based insight into what is actually happening at the curb. To achieve this objective, the research team developed and implemented a data collection method to quantify the usage of curb space in the densest urban area of Seattle, Center City.

This study captures the parking behavior of commercial vehicles everywhere along the block face as well as the parking activities of all vehicles (including passenger vehicles) in commercial vehicle loading zones. Based on the empirical findings, important characteristics of Seattle’s urban freight parking operations are described, including a detailed classification of vehicle types, dwell time distribution, and choice of curb use for parking (e.g., authorized and unauthorized spaces). The relationship between land use and commercial vehicle parking operations at the curb is discussed. Seattle’s parking management initiatives will benefit from the insights into current behavior gained from this research.

Rapid urban growth, increasing demand, and higher customer expectations have amplified the challenges of urban freight movement. Finding an adequate space to park can be a major challenge in urban areas. For commercial vehicles used for freight transportation and provision of services, the lack of parking spaces and parking policies that recognize those vehicles’ unique needs can have negative impacts that affect all users of the road, particularly the drivers of these commercial vehicles (1–4).

The curb is an important part of the public right-of-way. It provides a space for vehicles to park on-street; for delivery vehicles (i.e., cargo bikes, cargo vans, and trucks), in particular, it also provides a dedicated space for the loading and unloading of goods close to destinations. Hence it is a key asset for urban freight transportation planning which local governments can administer to support delivery and collection of goods.

According to Marcucci et al. (5), the development of sustainable management policies for urban logistics should be based on site-specific data given the heterogeneity and complexity of urban freight systems. Current loading/unloading parking policies include time restrictions, duration, pricing, space management, and enforcement (6, 7). However, as Marcucci et al. pointed out after an extensive review of the literature on freight parking policy, the quantification of commercial vehicle operations on the curb to inform policy decision making is nonexistent (5). Therefore, local governments often lack data about the current usage of the curb and parking infrastructure, which is necessary to evaluate and establish these policies and therefore make well-informed decisions regarding freight planning, especially in dense, constrained urban areas.

Given the importance of the curb as an essential piece of the load/unload infrastructure, this paper investigates what is actually happening at the curb, developing an evidence-based understanding of the current use of this infrastructure. The research team developed and applied a systematic data collection method resulting in empirical findings about the usage of public parking for loading and unloading operations in the Seattle downtown area.

This research documents and analyzes the parking patterns of commercial vehicles (i.e., delivery, service, waste management, and construction vehicles) in the area around five prototype buildings located in the Center City area. The results of this research will help to develop and inform parking management initiatives.

The paper includes four sections in addition to this introduction. The second section discusses previous freight parking studies and the existing freight parking policies in cities, and explores which of these approaches are being used in Seattle. The third section proposes a data collection method to document freight-related parking operations at the curb though direct observations. The fourth section provides empirical findings from data collection in Seattle. The fifth and last section includes a discussion of the findings and concluding remarks.

Recommended Citation:
Girón-Valderrama, Gabriela del Carmen, José Luis Machado-León, and Anne Goodchild. "Commercial Vehicle Parking in Downtown Seattle: Insights on the Battle for the Curb." Transportation Research Record (2019): 0361198119849062.
Paper

Developing Design Guidelines for Commercial Vehicle Envelopes on Urban Streets (Paper)

 
Download PDF  (0.39 MB)
Publication: International Journal of Transport Development and Integration
Volume: 3:02
Pages: 132 - 143
Publication Date: 2019
Summary:

Commercial heavy vehicles using urban curbside loading zones are not typically provided with an envelope, or space adjacent to the vehicle, allocated for loading and unloading activities. While completing loading and unloading activities, couriers are required to walk around the vehicle, extend ramps and handling equipment and maneuver goods; these activities require space around the vehicle. But the unique space needs of delivery trucks are not commonly acknowledged by or incorporated into current urban design practices in either North America or Europe. Because of this lack of a truck envelope, couriers of commercial vehicles are observed using pedestrian pathways and bicycling infrastructure for unloading activities, as well as walking in traffic lanes. These actions put them and other road users in direct conflict and potentially in harm’s way.

This article presents our research to improve our understanding of curb space and delivery needs in urban areas. The research approach involved the observation of delivery operations to determine vehicle type, loading actions, door locations and accessories used. Once common practices had been identified by observing 25 deliveries, simulated loading activities were measured to quantify different types of loading space requirements around commercial vehicles. This resulted in a robust measurement of the operating envelope required to reduce conflicts between truck loading and unloading activities with adjacent pedestrian, bicycle, and motor vehicle activities. From these results, commercial loading zone design recommendations can be developed that will allow our urban street system to operate more efficiently, safely and reliably for all users.

Recommended Citation:
McCormack, Edward, Anne Goodchild, Manali Sheth, and David Hurwitz. Developing Design Guidelines for Commercial Vehicle Envelopes on Urban Streets. International Journal of Transport Development and Integration, 3(2), 132–143. https://doi.org/10.2495/TDI-V3-N2-132-143
Report

Seattle Center City: Alley Infrastructure Inventory and Occupancy Study

 
Download PDF  (2.84 MB)
Publication Date: 2018
Summary:

The Supply Chain and Transportation Logistics (SCTL) Center conducted an alley inventory and truck load/unload occupancy study for the City of Seattle. Researchers collected data identifying the locations and infrastructure characteristics of alleys within Seattle’s One Center City planning area, which includes the downtown, uptown, South Lake Union, Capitol Hill, and First Hill urban centers. The resulting alley database includes GIS coordinates for both ends of each alley, geometric and traffic attributes, and photos. Researchers also observed all truck load/unload activity in selected alleys to determine minutes vacant and minutes occupied by trucks, vans, passenger vehicles, and cargo bikes. The researchers then developed alley management recommendations to promote safe, sustainable, and efficient goods delivery and pick-up.

Key Findings:

The first key finding of this study is that more than 90% of Center City alleys are only one lane wide. This surprising fact creates an upper limit on alley parking capacity, as each alley can functionally hold only one or two vehicles at a time. Because there is no room to pass by, when a truck, van, or car parks it blocks all other vehicles from using the alley. When commercial vehicle drivers see that an alley is blocked they will not enter it, as their only way out would be to back up into street traffic. Seattle Municipal Code prohibits this, as well as backing up into an alley, for safety reasons.

When informed by the second key finding—68% of vehicles in the alley occupancy study parked there for 15 minutes or less—it is clear that moving vehicles through alleys in short time increments is the only reasonable path to increase productivity. As one parked vehicle operationally blocks the entire alley, the goal of new alley policies and strategies should be to reduce the amount of time alleys are blocked to additional users.

The study surfaces four additional key findings:

  1. 87% of all vehicles in the 7 alleys studied parked for 30 minutes or less. Given the imperative to move alley traffic quickly, vehicles that need more parking time must be moved out of the alleys and onto the curb where they don’t block others.
  2. 15% of alleys’ pavement condition is so poor that delivery workers can’t pass through with loaded hand carts.  Although trucks can drive over fairly uneven pavement without difficulty, it is not the case for delivery people walking with fully loaded handcarts.  The alley pavement rating was done with a qualitative visual inspection to identify obvious problems; more detailed measurements would be needed to fully assess conditions.
  3. 73% of Center City area alleys contain entrances to passenger parking facilities. Placing garage entrances in alleys has been a city policy goal for years. But it increases the frequency of cars in alleys and adds demands on alley use. Understanding why cars are queuing for passenger garages located off alleys, and providing incentives and disincentives to reduce that, would help make alleys more productive.
  4. Alleys are vacant about half of the time during the business day. While at first blush this suggests ample capacity, the fact that an alley can only hold one-to-two parked trucks at a time means alleys are limited operationally and therefore are not a viable alternative to replace the use of curb CVLZs on city streets.

These findings indicate that, due to the fixed alley width constraint, load/unload space inside Seattle’s existing Center City area alleys is insufficient to meet additional future demand.

Recommended Citation:
Urban Freight Lab (2018). Seattle Center City: Alley Infrastructure Inventory and Occupancy Study.
Paper

Delivery Process for an Office Building in the Seattle Central Business District

 
Download PDF  (1.43 MB)
Publication: Transportation Research Record: Journal of the Transportation Research Board
Volume: Transportation Research Board 97th Annual Meeting
Publication Date: 2018
Summary:

Movement of goods within a central business district (CBD) can be very constraining with high levels of congestion and insufficient curb spaces. Pick-up and delivery activities encompass a significant portion of urban goods movement and inefficient operations can negatively impact the already highly congested areas and truck dwell times. Identifying and quantifying the delivery processes within the building is often difficult.

This paper introduces a systematic approach to examine freight movement, using a process flow map with quantitative delivery times measured during the final segment of the delivery process. This paper focuses on vertical movements such as unloading/loading activities, taking freight elevators, and performing pick-up/delivery operations. This approach allows us to visualize the components of the delivery process and identify the processes that consume the most time and greatest variability. Using this method, the authors observed the delivery process flows of an office building in downtown Seattle, grouped into three major steps: 1. Entering, 2. Delivering, 3. Exiting. This visualization tool provides researchers and planners with a better understanding of the current practices in the urban freight system and helps identify the non-value-added activities and time that can unnecessarily increase the overall delivery time.

Authors: Haena KimDr. Anne Goodchild, Linda Ng Boyle
Recommended Citation:
Kim, Haena, Linda Ng Boyle, and Anne Goodchild. "Delivery Process for an Office Building in the Seattle Central Business District." Transportation Research Record 2672, no. 9 (2018): 173-183. 

Seattle Center City Alley Infrastructure Inventory and Occupancy Study 2018 (Task Order 4)

The Urban Freight Lab conducted an alley inventory and truck load/unload occupancy study for the City of Seattle. Researchers collected data identifying the locations and infrastructure characteristics of alleys within Seattle’s One Center City planning area, which includes the downtown, uptown, South Lake Union, Capitol Hill, and First Hill urban centers. The resulting alley database includes GIS coordinates for both ends of each alley, geometric and traffic attributes, and photos. Researchers also observed all truck load/unload activity in selected alleys to determine minutes vacant and minutes occupied by trucks, vans, passenger vehicles, and cargo bikes. The researchers then developed alley management recommendations to promote safe, sustainable, and efficient goods delivery and pick-up.

Key Findings

The first key finding of this study is that more than 90% of Center City alleys are only one-lane wide. This surprising fact creates an upper limit on alley parking capacity, as each alley can functionally hold only one or two vehicles at a time. Because there is no room to pass by, when a truck, van, or car parks it blocks all other vehicles from using the alley. When commercial vehicle drivers see that an alley is blocked they will not enter it, as their only way out would be to back up into street traffic. Seattle Municipal code prohibits this, as well as backing up into an alley, for safety reasons.

When informed by the second key finding‚ 68% of vehicles in the alley occupancy study parked there for 15 minutes or less‚ it is clear that moving vehicles through alleys in short time increments is the only reasonable path to increase productivity. As one parked vehicle operationally blocks the entire alley, the goal of new alley policies and strategies should be to reduce the amount of time alleys are blocked to additional users.

The study surfaces four additional key findings:

  1. 87% of all vehicles in the 7 alleys studied parked for 30 minutes or less. Given the imperative to move alley traffic quickly, vehicles that need more parking time must be moved out of the alleys and onto the curb where they don’t block others.
  2. 15% of alleys’ pavement condition is so poor that delivery workers can’t pass through with loaded hand carts. Although trucks can drive over fairly uneven pavement without difficulty, it is not the case for delivery people walking with fully loaded handcarts. The alley pavement rating was done with a qualitative visual inspection to identify obvious problems; more detailed measurements would be needed to fully assess conditions.
  3. 73% of Center City area alleys contain entrances to passenger parking facilities. Placing garage entrances in alleys has been a city policy goal for years. But it increases the frequency of cars in alleys and adds demands on alley use. Understanding why cars are queuing for passenger garages located off alleys, and providing incentives and disincentives to reduce that, would help make alleys more productive.
  4. Alleys are vacant about half of the time during the business day. While at first blush this suggests ample capacity, the fact that an alley can only hold one-to-two parked trucks at a time means alleys are limited operationally and therefore are not a viable alternative to replace the use of curb CVLZs on city streets.

These findings indicate that, due to the fixed alley width constraint, load/unload space inside Seattle’s existing Center City area alleys is insufficient to meet additional future demand.

Chapter

Are Cities’ Delivery Spaces in the Right Places? Mapping Truck Load/Unload Locations

 
Download PDF  (5.67 MB)
Publication: City Logistics 2: Modeling and Planning Initiatives (Proceedings of the 2017 International Conference on City Logistics)
Volume: 2
Pages: 351-368
Publication Date: 2018
Summary:

Two converging trends – the rise of e‐commerce and urban population growth – challenge cities facing competing uses for road, curb and alley space. The University of Washington has formed a living Urban Freight Lab to solve city logistics problems that cross private and public sector boundaries. To assess the capacity of the city’s truck load/unload spaces, the lab collected GIS coordinates for private truck loading bays, and combined them with public GIS layers to create a comprehensive map of the city’s truck parking infrastructure. The chapter offers a practical approach to identify useful existent urban GIS data for little or no cost; collect original granular urban truck data for private freight bays and loading docks; and overlay the existing GIS layers and a new layer to study city‐wide truck parking capacity. The Urban Freight Lab’s first research project is addressing the “Final 50 Feet” of the urban delivery system.

Recommended Citation:
Goodchild, Anne, Barb Ivanov, Ed McCormack, Anne Moudon, Jason Scully, José Machado Leon, and Gabriela Giron Valderrama. Are Cities' Delivery Spaces in the Right Places? Mapping Truck Load/Unload Locations: Modeling and Planning Initiatives. City Logistics 2: Modeling and Planning Initiatives (2018): 351-368. 10.1002/9781119425526.ch21
Report

Supporting Comprehensive Urban Freight Planning by Mapping Private Load and Unload Facilities

 
Download PDF  (1.27 MB)
Publication Date: 2023
Summary:

Freight load and unload facilities located off the public right-of-way are typically not documented in publicly available databases. Without detailed knowledge of these facilities, i.e. private freight load and unload infrastructure, cities are limited in their ability to complete system-wide freight planning and to comprehensively evaluate the total supply of load and unload spaces in the city. To address this challenge, this research describes the development and application of a data collection methodology and a typology of private freight load/unload facilities for their inventory and documentation in dense urban centers.

The tools developed in this research are practice-ready and can be implemented in other cities to support research, policy and planning approaches that aim to improve the urban freight system. Assessment of the degree of harmonization between the current delivery vehicle dimensions and infrastructure they service is a crucial step of any policy that addresses private freight load/unload infrastructures. This includes providing: the adequate access dimensions, capacity to accommodate the volume and vehicle type, and an effective connecting design between the facilities and the public right-of-way.

A case study in Downtown Seattle found more than 337 private freight facilities for loading/unloading of goods but that translates into only 5% of the buildings in the densest areas of the city had these facilities. Alleys were found to play a critical role since 36% of this freight infrastructure was accessed through alleys.

This research results in the first urban inventory of private freight load/unload infrastructure, which has been shown to be a valuable resource for the City of Seattle that can be used to better understand and plan for the urban freight system.

Recommended Citation:
Machado León, J., Girón-Valderrama, G., Goodchild, A., & McCormack, E. Supporting Comprehensive Urban Freight Planning by Mapping Private Load and Unload Facilities (2023).
Report

Final Report: Technology Integration to Gain Commercial Efficiency for the Urban Goods Delivery System, Meet Future Demand for City Passenger and Delivery Load/Unload Spaces, and Reduce Energy Consumption

 
Download PDF  (7.07 MB)
Publication Date: 2022
Summary:

This three-year project supported by the U.S. Department of Energy Vehicle Technologies Office has the potential to radically improve the urban freight system in ways that help both the public and private sectors. Working from 2018-2021, project researchers at the University of Washington’s Urban Freight Lab and collaborators at the Pacific Northwest National Laboratory have produced key data, tested technologies in complex urban settings, developed a prototype parking availability app, and helped close major knowledge gaps.

All the fruits of this project can be harnessed to help cities better understand, support and actively manage truck load/unload operations and their urban freight transport infrastructure. Project learnings and tools can be used to help make goods delivery firms more efficient by reducing miles traveled and the time it takes to complete deliveries, benefitting businesses and residents who rely on the urban freight system for supplies of goods. And, ultimately, these project learnings and tools can be used to make cities more livable by minimizing wasted travel, which, in turn, contributes to reductions in fuel consumption and emissions.

Cities today are challenged to effectively and efficiently manage their infrastructure to absorb the impacts of ever-increasing e-commerce-fueled delivery demand. All delivery trucks need to park somewhere to unload and load. Yet today’s delivery drivers have no visibility on available parking until they arrive at a site, which may be full. That means they can wind up cruising for parking, which wastes time and fuel and contributes to congestion. Once drivers do find parking, the faster they can unload at the spot, the faster they free up space for other drivers, helping others avoid circling for parking. This makes the parking space—and thus the greater load/unload network—more productive.

To this end, the research team successfully met the project’s three goals, developing and piloting strategies and technologies to:

  • Reduce parking-seeking behavior in the study area by 20%
  • Reduce parcel truck dwell time (the time a truck spends in a spot to load/unload) in the study area by 30%
  • Increase curb space, alley space, and private loading bay occupancy rates in the study area

The research team met these goals by creating and piloting on Seattle streets OpenPark, a first-of-its-kind real-time and forecasting curb parking app customized for commercial delivery drivers—giving drivers the “missing link” in their commonly used routing tools that tell them how best to get to delivery locations, but not what parking is available to use when they get there. Installing in-ground sensors on commercial vehicle load zones (CVLZs) and passenger load zones (PLZs) in the 10-block study area in Seattle’s downtown neighborhood of Belltown let researchers glean real-time curb parking data. The research team also met project goals by piloting three parcel lockers in public and private spaces open to any delivery carrier, creating a consolidated delivery hub that lets drivers complete deliveries faster and spend less time parked. Researchers collected and analyzed data to produce the first empirical, robust, statistically significant results as to the impact of the lockers, and app, on on-the-ground operations. In addition to collecting and analyzing sensor and other real-time and historical data, researchers rode along with delivery drivers to confirm real-world routing and parking behavior. Researchers also surveyed building managers on their private loading bay operations to understand how to boost usage.

Key findings that provide needed context for piloting promising urban delivery solutions:

  • After developing a novel model using GPS data to measure parking-seeking behavior, researchers were able to quantify that, on average, a delivery driver spends 28% of travel time searching for parking, totaling on average one hour per day for a parcel delivery driver. This project offers the first empirical proof of delivery drivers’ cruising for parking.
  • While many working models to date have assumed that urban delivery drivers always choose to double-park (unauthorized parking in the travel lane), this study found that behavior is rare: Double parking happened less than 5% of the times drivers parked.
  • That said, drivers do not always park where they are supposed to. The research team found that CVLZ parking took place approximately 50% of the time. The remaining 50% included mostly parking in “unauthorized” curb spaces, including no-parking zones, bus zones, entrances/exits of parking garages, etc.
  • Researcher ride-alongs with delivery drivers revealed parking behaviors other than unauthorized parking that waste valuable time and fuel: re-routing (after failing to find a desired space, giving up and doubling back to the delivery destination later in the day) and queuing (temporarily parking in an alternate location and waiting until the desired space becomes available).
  • Some 13% of all parking events in CVLZ spaces were estimated as overstays; the figure was 80% of all parking events in PLZ spaces. So, the curb is not being used efficiently or as the city intended as many parking events exceed the posted time limit.
  • Meantime, there is unused off-street capacity that could be tapped in Seattle’s Central Business District. Estimates show private loading bays could increase area parking capacity for commercial vehicles by at least 50%. But surveys show reported use of loading bays is low and property managers have little incentive to maximize it. Property managers find curb loading zones more convenient; it seems delivery drivers do, too, as they choose to park at the curb even when loading bay space is available.

Key findings from the technology and strategies employed:

Carriers give commercial drivers routing tools that optimize delivery routes by considering travel distance and (often) traffic patterns—but not details on parking availability. Limited parking availability can lead to significant driver delays through cruising for parking or rerouting, and today’s drivers are largely left on their own to assess and manage their parking situation as they pull up to deliver.

The project team worked closely with the City of Seattle to obtain permission to install parking sensors in the roadway and communications equipment to relay sensor data to project servers. The team also developed a fully functional and open application that offers both real-time parking availability and near-time prediction of parking availability, letting drivers pick forecasts 5, 15, or 30 minutes into the future depending on when the driver expects to arrive at the delivery destination. Drivers can also enter their vehicle length to customize availability information.

After developing, modeling, and piloting the real-time and forecasting parking app, researchers conducted an experiment to determine how use of the app impacted driver behavior and transportation outcomes. They found that:

  • Having access to parking availability via the app resulted in a 28% decrease in the time drivers spent cruising for parking. Exceeding our initial goal of reducing parking seeking behavior by 20%. In the study experiment, all drivers had the same 20-foot delivery van and the same number of randomly sampled delivery addresses in the study area. But some drivers had access to the app; others did not.
  • Preliminary results based on historic routing data show that the use of such a real-time curb parking information and prediction app can reduce route time by approximately 1.5%. An analysis collected historic parking occupancy and cruising information and integrated it into a model that was then used to revise scheduling and routing. This model optimally routed vehicles to minimize total driving and cruising time. However, since the urban environment is complex and consists of many random elements, results based on historic data underly a high amount of randomness. Analysis on synthetic routes suggests including parking availability in routing systems is especially promising for routes with high delivery density and with stops where the cruising time delays vary a lot along the planned time horizon; here, route time savings can reach approximately 20.4% — conditions outlined in the report.
  • The central tradeoff among four approaches to parking app architecture going forward is cost and accuracy. The research team found that it is possible to train machine learning models using only data from curb occupancy sensors and reach a higher than 90% accuracy. Training of state-space models (those using inputs such as time of day, day of the week, and location to predict future parking availability) is computationally inexpensive, but these models offer limited accuracy. In contrast, deep-learning models are highly accurate but computationally expensive and difficult to use on streaming data.

Common carrier lockers create delivery density, helping delivery people complete their work faster. The driver parks next to the locker system, loads packages into it, and returns to the truck. When delivery people spend less time going door-to-door (or floor-to-floor inside a building), it cuts the time their truck needs to be parked, increasing turnover and adding parking capacity in crowded cities. This project piloted and collected data on common carrier lockers in three study area buildings.

From piloting the common carrier parcel lockers, researchers found that:

  • The implementation of the parcel locker allowed delivery drivers to increase productivity: 40%-60% reduction in time spent in the building and 33% reduction in vehicle dwell time at the curb.
Authors: Dr. Anne GoodchildDr. Giacomo Dalla ChiaraFiete KruteinDr. Andisheh RanjbariDr. Ed McCormackElizabeth Guzy, Dr. Vinay Amatya (PNNL), Ms. Amelia Bleeker (PNNL), Dr. Milan Jain (PNNL)
Recommended Citation:
Urban Freight Lab (2022). Final Report: Technology Integration to Gain Commercial Efficiency for the Urban Goods Delivery System.