Skip to content
Report

Evaluation of Sound Transit Train Stations and Transit-Oriented Development Areas for Common Carrier Locker Systems (Executive Summary)

 
Download PDF  (1.66 MB)
Publication Date: 2018
Summary:

The rapid expansion of ecommerce has flooded American cities with delivery trucks, just as those cities are experiencing booming population growth. Retailers need a more efficient, reliable, and cost-effective way to deliver goods in increasingly crowded urban environments. For their part, cities like Seattle want to minimize traffic congestion, both sustain quality of life for residents and ensure a smooth flow of goods and services.

Common carrier parcel lockers hold tremendous potential for streamlining the urban goods delivery system and addressing these challenges. This research study explores the viability of providing public right of way for common carrier lockers at or near transit stations in Seattle, a ground-breaking step toward improving freight delivery in the city’s fast-growing urban core.

Recommended Citation:
Supply Chain Transportation & Logistics Center. (2018) Evaluation of Sound Transit Train Stations and Transit Oriented Development Areas for Common Carrier Locker Systems (Executive Summary)
Article

Where’s My Package? Common Carrier Freight Lockers Can Ease City Traffic and Prevent Failed Deliveries

Publication: The Conversation
Publication Date: 2018
Summary:

Online shopping is a big convenience for many Americans, but porch piracy can ruin the experience. For example, Mikaela Gilbert lived in a row house in West Philadelphia while she studied systems engineering at the University of Pennsylvania. By her junior year, Gilbert had lost enough packages to thieves that she devised an elaborate three-pronged security strategy.

Her first line of defense was having online purchases shipped to a friend who lived in a high-rise apartment where a doorman secured incoming packages. She also sent orders to her parents’ house in New Jersey when she had a visit home planned. But both of those options were hugely inconvenient, so sometimes she routed deliveries to her place after texting her seven housemates to be on the lookout.

When Amazon installed branded delivery lockers near the center of campus, Gilbert began receiving packages there, which was less stressful than managing a small army of collaborators. But it limited her shopping to just one retailer. When Amazon didn’t have something she wanted, she had to fall back on her circle of friends.

Retailers delivering to a customers’ homes also want to avoid these situations. Research at our lab has identified a promising alternative: publicly accessible common carrier freight lockers where all retailers can leave packages for pickup.

So many stops, so little time
Like Amazon’s branded lockers, common carrier lockers are automated, self-service storage units that provide a secure location for customers to receive online purchases. However, any retailer or delivery firm can access them. Some private buildings have such lockers now, but those are only open to residents. Our study examined the effectiveness of locating them in public spaces in dense urban areas, where they can be available to everyone.

The University of Washington’s Urban Freight Lab is a structured research work group composed of leading retail, logistics and delivery firms. We partner with the Seattle Department of Transportation, collect and analyze data, and run pilot tests of promising solutions in Seattle’s Center City area. Our focus is on solving urban delivery issues in an age when e-commerce is exploding, city populations are expanding, and gridlock is reaching epic levels.

In its first report, published in early 2018, the Lab analyzed the “Final 50 Feet” of the urban goods delivery system – the last leg of the supply chain. It begins when trucks pull into a parking space and stop moving, whether at the curb, in an alley, or at a building’s loading dock or internal freight bay. From there, it follows delivery people inside urban towers, ending where customers receive their packages.

Researchers discovered two especially thorny challenges in this segment of the chain: extended “dwell time,” when trucks are parked in load/unload spaces too long, and failed first delivery attempts due to causes that include porch piracy. Solving these puzzles could reduce delivery costs, traffic congestion and crime rates, and improve online shoppers’ experiences.

Delivering packages one at a time to individual homes or offices is time-consuming and requires driving to multiple locations and parking in multiple spaces. It also results in failed first delivery rates of up to 15 percent in parts of some cities, according to some of our lab’s member companies. Instead, we decided to try creating delivery density in a single location right where the trucks unloaded.

Centralized lockers where people live and work
Accordingly, the Urban Freight Lab’s second research project pilot-tested placing a common carrier locker system in the 62-floor Seattle Municipal Tower in downtown Seattle’s financial district. This step cut the time required to make deliveries in the tower by 78 percent. The next question was where to locate more of these delivery density points, or “mini-distribution nodes,” as the study called them.

Amazon, which is headquartered in Seattle, had already approached regional transportation agency Sound Transit about locating its branded lockers at the agency’s Link light rail stations. But public stewards of the property – the Seattle Department of Transportation, Sound Transit and King County Metro – did not want to advantage one carrier or retailer over others. Instead, we suggested locating common carrier lockers.

The transit agencies saw that this could reduce delivery truck traffic in neighborhoods they served, easing congestion and reducing vehicle emissions. And their mobility hub policies aimed to create lively public spaces that offered not only multiple transportation modes but lots of convenient amenities.

In a survey of 185 riders at three transit stations, our lab’s third research study found strong interest in the lockers, with up to 67 percent of respondents at each station willing to use them and the vast majority willing to carry a package three to six blocks to do so. These responses, plus the fact that some 137,000 people lived within a 30-minute walk of the three stations, suggested that tens of thousands of Seattle residents would be willing to use common carrier lockers at those stations.

For retailers like Nordstrom, the lockers represent a potential solution to porch piracy and other glitches associated with online shopping. “Rather than leaving the package at a door, some carriers want customers to come to their location to collect the package, while others might redeliver,” Loren VandenBerghe, director of transportation for Nordstrom, told us. “Whatever the process, the customer has to track down the package. Instead, we’d prefer to get the package in our customer’s hands when they expect it.”

Researchers have developed criteria for selecting locker locations and chosen five possible sites at or near the transit stations for pilot testing. We have received funding from the U.S. Department of Energy to expand use of common carriers lockers in public spaces to a larger area in Seattle’s dense urban core and start actively managing the load/unload space network with new technology. Delivery drivers will be able to pull right up to lockers and unload goods, and riders can pick up their packages when they hop on or off a bus – making it much more convenient than waiting for a truck and scanning the street for porch pirates.

Recommended Citation:
Goodchild, A. (2018, December 18). Where’s my package? Common carrier freight lockers can ease city traffic and prevent failed deliveries. The Conversation. https://theconversation.com/wheres-my-package-common-carrier-freight-lockers-can-ease-city-traffic-and-prevent-failed-deliveries-108455
Article

How Many Amazon Packages Get Delivered Each Year?

Publication: The Conversation
Publication Date: 2022
Summary:

How many Amazon packages get delivered each year? – Aya K., age 9, Illinois

It’s incredibly convenient to buy something online, right from your computer or phone. Whether it’s a high-end telescope or a resupply of toothpaste, the goods appear right at your doorstep. This kind of shopping is called “e-commerce” and it’s becoming more popular each year. In the U.S., it has grown from a mere 7% of retail purchases in 2012 to 19.6% of retail and $791.7 billion in sales in 2020.

Amazon’s growing reach
For Amazon, the biggest player in e-commerce, this means delivering lots of packages.

In 2021 Amazon shipped an estimated 7.7 billion packages globally, based on its nearly $470 billion in sales.

In 2021 Amazon shipped an estimated 7.7 billion packages globally.

If each of these packages were a 1-foot square box and they were stacked on top of one another, the pile would be six times higher than the distance from the Earth to the Moon. Laid end to end, they would wrap around the Earth 62 times.

Back in the early 2010s, most things bought from Amazon.com were shipped using a third-party carrier like FedEx or UPS. In 2014, however, Amazon began delivering packages itself with a service called “Fulfilled by Amazon.” That’s when those signature blue delivery vans started appearing on local streets.

Since then, Amazon’s logistics arm has grown from relying entirely on other carriers to shipping 22% of all packages in the U.S. in 2021. This is greater than FedEx’s 19% market share and within striking distance of UPS’s 24%. Amazon’s multichannel fulfillment service allows other websites to use its warehousing and shipping services. So your order from Etsy or eBay could also be packed and shipped by Amazon.

The supply chain
To handle that many packages, shipping companies need an extensive network of manufacturers, vehicles and warehouses that can coordinate together. This is called the supply chain. If you’ve ever used a tracking number to follow a package, you’ve seen it in action.

People who make decisions about where to send vehicles and how to route packages are constantly trying to keep costs down while still getting packages to customers on time. The supply chain can do this very effectively, but it also has downsides.

More delivery vehicles on the road produce more greenhouse gas emissions that contribute to climate change, along with pollutants like nitrogen oxides and particulate matter that are hazardous to breathe. Traffic congestion is also a major concern in cities as delivery drivers try to find parking on busy streets.

Urban freight solutions
Are there ways to balance the increasing number of deliveries while making freight safe, sustainable and fast? At the University of Washington’s Urban Freight Lab, we work with companies like Amazon and UPS and others in the shipping, transportation and real estate sectors to answer questions like this. Here are some solutions for what we and our colleagues call the “last mile” – the last leg of a package’s long journey to your doorstep.

  • Electrification: Transitioning from gasoline and diesel vehicles to fleets of electric or other zero-emission vehicles reduces pollution from delivery trucks. Tax credits and local policies, such as creating so-called green loading zones and zero-emission zones for clean vehicles, create incentives for companies to make the switch.
  • Common carrier lockers: Buildings can install lockers at central locations, such as busy transit stops, so that drivers can drop off packages without going all the way to your doorstep. When you’re ready to pick up your items, you just stop by at a time that’s convenient for you. This reduces both delivery truck mileage and the risk of packages being stolen off of porches.
  • Cargo bicycles: Companies can take the delivery truck out of the equation and use electric cargo bicycles to drop off smaller packages. In addition to being zero-emission, cargo bicycles are relatively inexpensive and easy to park, and they provide a healthier alternative for delivery workers.

To learn more about supply chains and delivery logistics, check with your town or city’s transportation department to see if they are testing or already have goods delivery programs or policies, like those in New York and Seattle. And the next time you order something for delivery, consider your options for receiving it, such as walking or biking to a package locker or pickup point, or consolidating your items into a single delivery.

Package delivery can be both convenient and sustainable if companies keep evolving their supply chains, and everyone thinks about how they want delivery to work in their neighborhoods.

Recommended Citation:
Goodchild, A. How many Amazon packages get delivered each year? The Conversation. https://theconversation.com/how-many-amazon-packages-get-delivered-each-year-187587
Chapter

Success Factors for Urban Logistics Pilot Studies

Publication: The Routledge Handbook of Urban Logistics
Publication Date: 2023
Summary:

The last mile of delivery is undergoing major changes, experiencing new demand and new challenges. The rise in urban deliveries amid the societal impacts of the COVID-19 pandemic has dramatically affected urban logistics. The level of understanding is increasing as cities and companies pilot strategies that pave the way for efficient urban freight practices. Parcel lockers, for instance, have been shown to reduce delivery dwell times with such success that Denmark increased its pilot program of 2,000 lockers to 10,000 over the past two years. This chapter focuses on challenges faced during those pilots from technical, managerial and operational perspectives, and offers examples and lessons learned for those who are planning to design and/or run future pilot tests. On-site management proved to be critical for locker operations.

Recommended Citation:
Ranjbari, Andisheh & Goodchild, A & Guzy, E. (2023). Success Factors for Urban Logistics Pilot Studies. 10.4324/9781003241478-27.
Technical Report

The Final 50 Feet of the Urban Goods Delivery System: Pilot Test of an Innovative Improvement Strategy

 
Download PDF  (3.07 MB)
Publication: Pacific Northwest Transportation Consortium (PacTrans)
Publication Date: 2019
Summary:

This report presents a pilot test of a common carrier smart locker system — a promising strategy to reduce truck trip and failed first delivery attempts in urban buildings. The Urban Freight Lab tested this system in the 62-story Seattle Municipal Tower skyscraper in downtown Seattle.

The Urban Freight Lab identified two promising strategies for the pilot test: (1) Locker system: smaller- to medium-sized deliveries can be placed into a locker that was temporarily installed during the pilot test; and (2) Grouped-tenant-floor-drop-off-points for medium-sized items if the locker was too small or full (4-6 floor groups set up by Seattle Department of Transportation and Seattle City Light).

Users picked up their goods at the designated drop-off points. Flyers with information on drop-off-points were given to the carriers. UFL researchers evaluated the ability of the standardized second step pilot test to reduce the number of failed first delivery attempts by (1) Collecting original data to document the number of failed first delivery attempts before and after the pilot test; and (2) Comparing them to the pilot test goals.

Recommended Citation:
Goodchild, A., Kim, H., & Ivanov, B. Final 50 Feet of the Urban Goods Delivery System: Pilot Test of an Innovative Improvement Strategy. (2019)
Report

The Final 50 Feet of the Urban Goods Delivery System: Common Carrier Locker Pilot Test at the Seattle Municipal Tower

 
Download PDF  (1.59 MB)
Publication Date: 2018
Summary:

This report provides compelling evidence of the effectiveness of a new urban goods delivery system strategy: Common Carrier Locker Systems that create parcel delivery density and provide secure delivery locations in public spaces.

Common carrier locker systems are an innovative strategy because they may be used by any retailer, carrier, and goods purchaser, and placed on public property.  This contrasts with branded lockers such as those operated by Amazon, UPS, and FedEx that are limited to one retailer’s or one carrier’s use. Common carrier lockers use existing smart locker technology to provide security and convenience to users.

The Common Carrier Locker System Pilot Test in the Seattle Municipal Tower was uniquely designed for multiple retailers’ and delivery firms’ use in a public space. In spring 2018, a common carrier locker system was placed in the 62-floor Seattle Municipal Tower for ten days as part of a joint research project of the Urban Freight Lab (UFL) at the University of Washington’s Supply Chain Transportation & Logistics Center and the Seattle Department of Transportation (SDOT), with additional funding from the Pacific Northwest Transportation Consortium (PacTrans).

This report demonstrates common carrier lockers’ potential to reach both public and private goals by reducing dwell time (the time a truck is parked in a load/unload space in the city) and the number of failed first delivery attempts to dense urban areas. This research provides evidence that delivering multiple packages to a single location such as a locker, rather than delivering packages one-by-one to individual tenants in an urban tower increases the productivity of public and private truck load/unload spaces.

The concept for this empirical pilot test draws on prior UFL-conducted research on the Final 50 Feet of the urban goods delivery system. The Final 50 Feet is the term for the last segment of the supply chain. It begins when a truck parks in a load/unload space, continues as drivers maneuver goods along sidewalks and into urban towers to make the final delivery, and ends where the customer takes receipt of the goods.

The UFL’s 2017 research documented that of the 20 total minutes delivery drivers spent on average in the Seattle Municipal Tower, 12.2 of those minutes were spent going floor-to-floor in freight elevators and door-to-door to tenants on multiple floors.  The UFL recognized that cutting those two steps from the delivery process could slash delivery time in the Tower by more than half—which translates into a substantial reduction in truck dwell time.

Recommended Citation:
Urban Freight Lab (2018). The Final 50 Feet of the Urban Goods Delivery System: Common Carrier Locker Pilot Test at the Seattle Municipal Tower.
Report

Evaluation of Sound Transit Train Stations and Transit-Oriented Development Areas for Common Carrier Locker Systems (Final Report)

 
Download PDF  (7.04 MB)
Publication Date: 2018
Summary:

The rapid expansion of ecommerce has flooded American cities with delivery trucks, just as those cities are experiencing booming population growth. Retailers need a more efficient, reliable, and cost-effective way to deliver goods in increasingly crowded urban environments. For their part, cities like Seattle want to minimize traffic congestion, both sustain quality of life for residents and ensure a smooth flow of goods and services.

Common carrier parcel lockers hold tremendous potential for streamlining the urban goods delivery system and addressing these challenges. This research study explores the viability of providing public right of way for common carrier lockers at or near transit stations in Seattle, a ground-breaking step toward improving freight delivery in the city’s fast-growing urban core.

Recommended Citation:
Supply Chain Transportation & Logistics Center. (2018) Evaluation of Sound Transit Train Stations and Transit Oriented Development Areas for Common Carrier Locker Systems.

The Final 50 Feet of the Urban Goods Delivery System: Pilot Test of an Innovative Improvement Strategy

Background

We are living at the convergence of the rise of e-commerce and fast growing cities. Surging growth in U.S. online sales has averaged more than 15% year-over-year since 2010. Total e-commerce sales for 2016 were estimated at $394.9 billion, an increase of 15.1 percent from 2015. This is a huge gain when compared to total retail sales in 2016, which only increased 2.9 percent from 2015. E-commerce sales in 2016 accounted for 8.1 percent of total sales, while accounting for 7.3 percent of total sales in 2015.

This is causing tremendous pressure on local governments to rethink the way they manage street curb parking and alley operations for trucks and other delivery vehicles, and on building operators to plan for the influx of online goods. City managers and policy makers are grappling with high demand for scarce road, curb and sidewalk space, and multiple competing uses. But rapidly growing cities lack data-based evidence for the strategies they are considering to support e-commerce and business vitality, while managing limited parking in street space that is also needed for transit, pedestrians, cars, bikes and trucks.

The Final 50 Feet is the project’s shorthand designation for the last leg of the delivery process, which:

  • Begins when a truck stops at a city-owned Commercial Vehicle Load Zone or alley, or in a privately-owned freight bay or loading dock in a building;
  • May extend along sidewalks or through traffic lanes; and
  • Ends where the end customer takes receipt of delivery.

Research Project

The purpose of the research project is to pilot test a promising strategy to reduce the number of failed first delivery attempts in urban buildings. The test will take place in the Seattle Municipal Tower. It will serve as a case study for transportation and urban planning professionals seeking to reduce truck trips to urban buildings. Urban Freight Lab identified two promising strategies for the pilot test:

  • Locker system: smaller to medium sized deliveries can be placed into a locker which will be temporarily installed during our pilot test
  • Grouped-tenant-floor-drop-off-points for medium sized items if locker is too small or full (4-6 floor groups to be set up by SDOT and Seattle City Light)
  • People will come and pick up the goods at the designated drop off points
  • Flyers with information of drop-off-points will be given to the carriers

UFL will evaluate the ability of the standardized second step pilot test to reduce the number of failed first delivery attempts by:

  • Collecting original data to document the number of failed first delivery attempts before and after the pilot test; and
  • Comparing them to the pilot test goals.

The Final 50 Feet: Common Carrier Locker Pilot Test at Seattle Municipal Tower (Part of Task Order 2)

As part of the Final 50 Feet Research Program, the Urban Freight Lab engaged multiple partners and funding sources to successfully pilot test a common carrier locker system (open to all retail and multiple delivery firms) that created delivery density in the Seattle Municipal Tower.

The pilot tested the ability of new mini-distribution centers such as smart lockers to create delivery density and reduce the time delivery people have to spend in urban towers to complete the work. The Lab collected “before” and “after” data to evaluate the pilot’s premise: that when delivery trucks can pull into a load/unload space that’s close to a mini-distribution node with delivery density (lots of deliveries in one place), everyone benefits. Lab members UPS and the U.S. Postal Service participated in this pilot, so any package they delivered to the building went into the locker system. The pilot was open to the first 100 Municipal Tower tenants who signed up to use the lockers from March to April 2018.

This pilot reduced the average amount of time parcel delivery personnel spent doing their work in the 62-floor office tower by 78%, when compared with going floor-to-floor, door-to-door in the tower. It demonstrates the UFL’s unique capability to develop cross-functional business and city working partnerships, gain senior executives’ participation in research, and effectively manage innovative and complex projects that have a high level of uncertainty. This pilot provides evidence that the common carrier locker system strategy can achieve a significant reduction in delivery time.

Presentation

Growth of Ecommerce and Ride-Hailing Services is Reshaping Cities Connecting State and City DOTs, and Transit Agencies for Innovative Solutions

 
Publication: AASHTO 2018 Joint Policy Conference: Connecting the DOTs
Volume: 19-Jul-18
Publication Date: 2018
Summary:

There is not enough curb capacity, now.

A recent curb parking utilization study in the City of Seattle indicated 90% or higher occupancy rates in Commercial Vehicle Load Zones (CVLZs) for some areas for much of the workday.

The Final Fifty Feet is a new research field.

The Final 50 Feet project is the first time that researchers have analyzed both the street network and cities’ vertical space as one unified goods delivery system. It focuses on:

  • The use of scarce curb, buildings’ internal loading bays, and alley space
  • How delivery people move with handcarts through intersections and sidewalks; and
  • On the delivery processes inside urban towers.
Authors: Barbara Ivanov