Skip to content
Paper

Toward Predicting Stay Time for Private Car Users: A RNN-NALU Approach

 
Download PDF  (1.94 MB)
Publication: IEEE Transactions on Vehicular Technology
Volume: 71 (6)
Pages: 6007 - 6018
Publication Date: 2022
Summary:

Predicting the stay time of private cars has various applications in location-based services and traffic management. Due to the associated randomness and uncertainty, achieving the promising performance of stay time prediction is a challenge. We propose an RNN-based encoder model to solve this problem, which consists of three components, i.e., an encoder module, an exception module, and an MLP dropout. First, we encode the stay behaviour into hidden vectors at a specific time to avoid the effect of time sparsity. The encoder module utilizes a multilayer perceptron (MLP) to learn spatiotemporal features from the historical trajectory data, such as the inherent relationship between the stop points and corresponding stay time. We proved a linear relationship problem that cannot be ignored in the stay time prediction problem. In particular, we have added basic arithmetic logic units to the network framework to find linear relationships. By reconstructing the basic arithmetic and logical relations of the network, we have improved the ability of the neural network to handle linear relations and the extrapolation ability of the neural network. Our method can remember the number patterns seen in the training set very well and infer this representation reasonably. Moreover, we utilize the dropout technique to prevent the prediction model from overfitting. We perform extensive experiments based on a large-scale real-world private car trajectory dataset. The experimental results demonstrate that our method achieves an RMSE of 0.1429 and a MAPE of 55.8533%. Furthermore, the results verify the effectiveness and advantages of the proposed model when compared with the benchmarks.

Authors: Amelia Regan, Qibo Zhang; Fanzi Zeng; Zhu Xiao; Hongbo Jiang; Kehua Yang; Yongdong Zhu
Recommended Citation:
Q. Zhang et al., "Toward Predicting Stay Time for Private Car Users: A RNN-NALU Approach," in IEEE Transactions on Vehicular Technology, vol. 71, no. 6, pp. 6007-6018, June 2022, doi: 10.1109/TVT.2022.3164978.
Paper

Systematic Approach for the Design of Flight Simulator Studies

 
Download PDF  (2.07 MB)
Publication: Proceedings of the Human Factors and Ergonomics Society 2019 Annual Meeting
Volume: 63:01:00
Pages: 833-837
Publication Date: 2019
Summary:

The examination of commercial pilot workload often requires the use of controlled simulated studies to identify causal effects. The specific scenarios to consider within a simulator study require an extensive understanding of the safety situations that can occur in flight while also considering the specific training that pilots are provided within a simulated environment. The purpose of this paper is to provide a more systematic approach to scenario identification based on historical data, feasibility of capturing behavioral changes, simulator constraints, and training curricula.

Authors: Fiete Krutein, Linda Ng Boyle
Recommended Citation:
Krutein, K. F., & Boyle, L. N. (2019). Systematic approach for the design of flight simulator studies. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 63(1), 833–837. https://doi.org/10.1177/1071181319631524
Paper

Impact of Transit Network Layout on Resident Mode Choice

 
Download PDF  (2.01 MB)
Publication: Mathematical Problems in Engineering
Volume: 4
Publication Date: 2013
Summary:
This study reviews the impact of public transit network layout (TNL) on resident mode choice. The review of TNL as a factor uses variables divided into three groups: a variable set without considering the TNL, one considering TNL from the zone level, and one considering TNL from the individual level. Using Baoding’s travel survey data, a Multinomial Logit (MNL) model is used, and the parameter estimation result shows that TNL has significant effect on resident mode choice. Based on parameter estimation, the factors affecting mode choice are further screened. The screened variable set is regarded as the input data to the BP neural network’s training and forecasting. Both forecasting results indicate that introducing TNL can improve the performance of mode choice forecasting.

 

 

Authors: Dr. Ed McCormack, Jian Gao, Peng Zhao, Chengxiang Zhuge, Hui Zhang
Recommended Citation:
Gao, J., Zhao, P., Zhuge, C., Zhang, H., & McCormack, E. D. (2013). Impact of Transit Network Layout on Resident Mode Choice. Mathematical Problems in Engineering, 2013.
Paper

Developing Design Guidelines for Commercial Vehicle Envelopes on Urban Streets (Paper)

 
Download PDF  (0.39 MB)
Publication: International Journal of Transport Development and Integration
Volume: 3:02
Pages: 132 - 143
Publication Date: 2019
Summary:

Commercial heavy vehicles using urban curbside loading zones are not typically provided with an envelope, or space adjacent to the vehicle, allocated for loading and unloading activities. While completing loading and unloading activities, couriers are required to walk around the vehicle, extend ramps and handling equipment and maneuver goods; these activities require space around the vehicle. But the unique space needs of delivery trucks are not commonly acknowledged by or incorporated into current urban design practices in either North America or Europe. Because of this lack of a truck envelope, couriers of commercial vehicles are observed using pedestrian pathways and bicycling infrastructure for unloading activities, as well as walking in traffic lanes. These actions put them and other road users in direct conflict and potentially in harm’s way.

This article presents our research to improve our understanding of curb space and delivery needs in urban areas. The research approach involved the observation of delivery operations to determine vehicle type, loading actions, door locations and accessories used. Once common practices had been identified by observing 25 deliveries, simulated loading activities were measured to quantify different types of loading space requirements around commercial vehicles. This resulted in a robust measurement of the operating envelope required to reduce conflicts between truck loading and unloading activities with adjacent pedestrian, bicycle, and motor vehicle activities. From these results, commercial loading zone design recommendations can be developed that will allow our urban street system to operate more efficiently, safely and reliably for all users.

Recommended Citation:
McCormack, Edward, Anne Goodchild, Manali Sheth, and David Hurwitz. Developing Design Guidelines for Commercial Vehicle Envelopes on Urban Streets. International Journal of Transport Development and Integration, 3(2), 132–143. https://doi.org/10.2495/TDI-V3-N2-132-143
Paper

Smart Growth and Goods Movement: Emerging Research Agendas

Publication: Journal Urbanism: International Research on Placemaking and Urban Sustainability
Volume: 2-Aug
Pages: 115-132
Publication Date: 2015
Summary:

While recent urban planning efforts have focused on the management of growth into developed areas, the research community has not examined the impacts of these development patterns on urban goods movement. Successful implementation of growth strategies has multiple environmental and social benefits but also raises the demand for intra-urban goods movement, potentially increasing conflicts between modes of travel and worsening air quality. Because urban goods movement is critical for economic vitality, understanding the relation between smart growth and goods movement is necessary in the development of appropriate policies.

This paper reviews the academic literature and summarizes the results of six focus groups to identify gaps in the state of knowledge and suggest important future research topics in five sub-areas of smart growth related to goods movement: (1) access, parking, and loading zones; (2) road channelization and bicycle and pedestrian facilities; (3) land use; (4) logistics; and (5) network system management.

Authors: Dr. Anne GoodchildDr. Ed McCormack, Erica Wygonik, Alon Bassok, Daniel Carlson
Recommended Citation:
Wygonik, Erica, Alon Bassok, Anne Goodchild, Edward McCormack, and Daniel Carlson. "Smart Growth and Goods Movement: Emerging Research Agendas." Journal of Urbanism: International Research on Placemaking and Urban Sustainability 8, no. 2 (2015): 115-132.
Paper

Reducing Train Turn Times with Double Cycling in New Terminal Designs

 
Download PDF  (0.79 MB)
Publication: Transportation Research Record: Journal of the Transportation Research Board
Volume: 2238
Pages: 14-Aug
Publication Date: 2011
Summary:

North American rail terminals need productivity improvements to handle increasing rail volumes and improve terminal performance. This paper examines the benefits of double cycling in wide-span gantry terminals that use automated transfer management systems. The authors demonstrate that the use of double cycling rather than the currently practiced single cycling in these terminals can reduce the number of cycles required to turn a train by almost 50% in most cases and reduce train turn time by almost 40%. This change can provide significant productivity improvements in rail terminals, increasing both efficiency and competitiveness.

Authors: Dr. Anne Goodchild, J. G. McCall, John Zumerchik, Jack Lanigan
Recommended Citation:
Goodchild, Anne, J. G. McCall, John Zumerchik, and Jack Lanigan Sr. "Reducing Train Turn Times with Double Cycling in New Terminal Designs." Transportation Research Record 2238, no. 1 (2011): 8-14.
Paper

Freeway Truck Travel Time Prediction for Freight Planning Using Truck Probe GPS Data

 
Download PDF  (0.41 MB)
Publication: European Journal of Transport and Infrastructure Research.
Volume: 16
Pages: 76-94
Publication Date: 2016
Summary:

Predicting truck (heavy vehicle) travel time is a principal component of freight project prioritization and planning. However, most existing travel time prediction models are designed for passenger vehicles and fail to make truck specific forecasts or use truck specific data. Little is known about the impact of this limitation, or how truck travel time prediction could be improved in response to freight investments with an improved methodology. In light of this, this paper proposes a pragmatic multi-regime speed-density relationship based approach to predict freeway truck travel time using empirical truck probe GPS data (which is increasingly available in North American and Europe) and loop detector data. Traffic regimes are segmented using a cluster analysis approach. Two case studies are presented to illustrate the approach. The travel time estimates are compared with the Bureau of Public Roads (BPR) model and the Akçelik model outputs. It is found that the proposed method is able to estimate more accurate travel times than traditional methods. The predicted travel time can support freight prioritization and planning.

Recommended Citation:
Wang, Zun, Anne V. Goodchild, and Edward McCormack. "Freeway truck travel time prediction for freight planning using truck probe GPS data." European Journal of Transport and Infrastructure Research 16, no. 1 (2016). 
Paper

4D Flight Trajectory Prediction using a Hybrid Deep Learning Prediction Method Based on ADS-B Technology: A Case Study of Hartsfield–Jackson Atlanta International Airport (ATL)

 
Download PDF  (1.56 MB)
Publication: Transportation Research Part C: Emerging Technologies
Volume: 144
Publication Date: 2022
Summary:

At the core of any flight schedule is the four dimensional (4D) trajectories which are comprised of three spatial dimensions with time added as the fourth dimension. Each trajectory contains spatial and temporal features that are associated with uncertainties that make the prediction process complex. Because of the increasing demand for air transportation, airports and airlines must have optimized schedules to best use the airports’ infrastructure potential. This is possible using advanced trajectory prediction methods. This paper proposes a novel hybrid deep learning model to extract spatial and temporal features considering the uncertainty for Hartsfield–Jackson

Atlanta International Airport (ATL). Automatic Dependent Surveillance-Broadcast (ADS–B) with a vast amount of spatial and temporal flight attribute data, are used in this paper as input to the models. This research is conducted in three steps: (a) data preprocessing; (b) prediction by a hybrid Convolutional Neural Network and Gated Recurrent Unit (CNN-GRU) along with a three dimensional (3D-CNN) model; (c) The third and last step is the comparison of the model’s performance with the proposed model by examining the experimental results. The deep model uncertainty is considered using Mont-Carlo dropout (MC-Dropout). Mont-Carlo dropouts are added

to the network layers to enhance the model’s prediction performance by a robust approach of switching off between different neurons. The results show that the proposed model has low error measurements compared to the other models (i.e., 3D CNN, CNN-GRU). The model with MCdropout reduces the error further by an average of 21 %.

Authors: Amelia Regan, Hesam Shafienya
Recommended Citation:
Shafienya, H., & Regan, A. C. (2022). 4D flight trajectory prediction using a hybrid Deep Learning prediction method based on ADS-B technology: A case study of Hartsfield–Jackson Atlanta International Airport (ATL). Transportation Research Part C: Emerging Technologies, 144, 103878. https://doi.org/10.1016/j.trc.2022.103878
Paper

The Automated Driver as a New Road User

 
Download PDF  (2.40 MB)
Publication: Transport Reviews
Pages: 23-Jan
Publication Date: 2020
Summary:

Although road infrastructure has been designed to accommodate human drivers’ physiology and psychology for over a century, human error has always been the main cause of traffic accidents. Consequently, Advanced Driver Assistance Systems (ADAS) have been developed to mitigate human shortcomings. These automated functions are becoming more sophisticated allowing for Automated Driving Systems (ADS) to drive under an increasing number of road conditions. Due to this evolution, a new automated road user has become increasingly relevant for both road owners and the vehicle industry alike. While this automated driver is currently operating on roads designed for human drivers, in the future, infrastructure policies may be designed specifically to accommodate automated drivers. However, the current literature on ADSs does not cover all driving processes. A unified framework for human and automated driver, covering all driving processes, is therefore presented. The unified driving framework, based on theoretical models of human driving and robotics, highlights the importance of sensory input in all driving processes. How human and automated drivers sense their environment is therefore compared to uncover differences between the two road users relevant to adapt road design and maintenance to include the automated driver. The main differences identified between human and automated drivers are that (1) the automated driver has a much greater range of electromagnetic sensitivity and larger field of view, and (2) that the two road users interpret sensory input in different ways. Based on these findings, future research directions for road design and maintenance are suggested.

Authors: Dr. Ed McCormack, Ane Dalsnes Storsaeter, Kelly Pitera
Recommended Citation:
Storsæter, A. D., Pitera, K., & McCormack, E. D. (2020). The automated driver as a new road user. Transport Reviews, 1–23. https://doi.org/10.1080/01441647.2020.1861124
Paper

GPS Truck Data Performance Measures Program in Washington State

 
Download PDF  (1.12 MB)
Publication: Washington State Transportation Center (TRAC)
Publication Date: 2011
Summary:

The Washington State Department of Transportation (WSDOT), Transportation Northwest at the University of Washington (UW), and the Washington Trucking Associations (WTA) have partnered on a research effort to collect and analyze global positioning systems (GPS) truck data from commercial, invehicle, truck fleet management systems. This effort was funded by the Washington State Legislature, and its purpose is to develop a statewide freight performance measures program for use by WSDOT. This document reviews the program’s previous phases and provides details about the latest phase of the program. The report also provides references to the technical documents that support the program.

Authors: Dr. Ed McCormack, Wenjuan Zhao
Recommended Citation:
McCormack, E. D., Zhao, W., & Tabat, D. (2011). GPS Truck Data Performance Measures Program in Washington State. Washington State Department of Transportation, Office of Research.