Skip to content
Paper

Choosing My Own Path: Revealing Differences in Route Choice Preferences Across Long-Haul, Medium-Haul, and Short-Haul Trucking

Publication Date: 2023
Summary:

The rapid growth in e-commerce activities and the constant specialization of industries have aroused an unparalleled demand for trucking in urban areas, leading to growing concern over its interference to the transportation system. Understanding truck route choice preferences across long-haul, medium-haul, and short-haul trips can offer insights for designing the truck route network tailored to specific freight demand types, so as to effectively reduce their interference to passenger transportation. However, limited research has been conducted to explore the heterogeneity or similarity of route choice preferences across those freight demand types. This study utilizes the Path Size Logit Model to explore the characteristics of preferred route across long-haul, medium-haul, and short-haul trips, and reveal the underlying route choice mechanism behind enormous trucking activities. By employing truck GPS data from China, we find that (1) although the characteristics of preferred routes vary across long-haul, medium-haul, and short-haul trips, those trips collectively reflect full consideration of travel efficiency, safety, and reliability; (2) all these freight demand types incline to the routes with shortest travel distances instead of those with shortest travel time, while short-haul trips exhibit the highest sensitivity to travel distance; (3) drivers in both long-haul and medium-haul trips favor routes that combine motorways and sub-arterial roads, while long-haul trips present higher sensitivity; (4) drivers in short-haul trips show preferences for routes featuring fewer turns, and sub-arterial roads given last-mile delivery demand. Finally, we propose suggestions for designing urban truck route network to accommodate diverse freight demand in high-density urban areas with limited road resources.

Authors: Dr. Anne Goodchild, Zhengtao Qin, Ruixu Pan, Chengcheng Yu, Tong Xiao, Chao Yang, Quan Yuan (Tongji University)
Recommended Citation:
Qin, Zhengtao and Pan, Ruixu and Yu, Chengcheng and Xiao, Tong and Yang, Chao and Goodchild, Anne and Yuan, Quan, Choosing My Own Path: Revealing Differences in Route Choice Preferences Across Long-Haul, Medium-Haul, and Short-Haul Trucking. http://dx.doi.org/10.2139/ssrn.4853521
Paper

Economic Analysis of Onboard Monitoring Systems in Commercial Vehicles

 
Download PDF  (1.01 MB)
Publication: Transportation Research Record
Volume: 2379
Pages: 64-71
Publication Date: 2013
Summary:
Onboard monitoring systems (OBMSs) can be used in commercial vehicle operations to monitor driving behavior, to enhance safety. Although improved safety produces an economic benefit to carriers, understanding how this benefit compares with the cost of the system is an important factor for carrier acceptance.
In addition to the safety benefits provided by the use of OBMSs, operational improvements may have economic benefits. This research provides, through a benefit-cost analysis, a better understanding of the economic implications of OBMSs from the perspective of the carrier. In addition to the benefits of reduced crashes, the benefits associated with reduced mileage, reduced fuel costs, and the electronic recording of hours of service (HOS) are considered. A sensitivity analysis demonstrates that OBMSs are economically viable under a wide range of conditions.
The results indicate that for some types of fleets, a reduction in crashes and an improvement in HOS recording provides a net benefit of close to $300,000 over the 5-year expected life span of the system. Furthermore, when additional benefits, such as reduced fuel consumption and reduced vehicle miles, are explored, the operation-related benefits can be upward of seven times more than the safety-related benefits.
This research also shows that net positive benefits are possible in large and small fleets. The results can be used to inform policies that motivate or mandate carriers to use such systems and to inform carriers about the value of system investment.

 

Authors: Dr. Anne Goodchild, Kelly A. Pitera, Linda Ng Boyle
Recommended Citation:
Pitera, Kelly, Linda Ng Boyle, and Anne V. Goodchild. "Economic Analysis of Onboard Monitoring Systems in Commercial Vehicles." Transportation Research Record 2379, no. 1 (2013): 64-71. 
Paper

Reducing Train Turn Times with Double Cycling in New Terminal Designs

 
Download PDF  (0.79 MB)
Publication: Transportation Research Record: Journal of the Transportation Research Board
Volume: 2238
Pages: 14-Aug
Publication Date: 2011
Summary:

North American rail terminals need productivity improvements to handle increasing rail volumes and improve terminal performance. This paper examines the benefits of double cycling in wide-span gantry terminals that use automated transfer management systems. The authors demonstrate that the use of double cycling rather than the currently practiced single cycling in these terminals can reduce the number of cycles required to turn a train by almost 50% in most cases and reduce train turn time by almost 40%. This change can provide significant productivity improvements in rail terminals, increasing both efficiency and competitiveness.

Authors: Dr. Anne Goodchild, J. G. McCall, John Zumerchik, Jack Lanigan
Recommended Citation:
Goodchild, Anne, J. G. McCall, John Zumerchik, and Jack Lanigan Sr. "Reducing Train Turn Times with Double Cycling in New Terminal Designs." Transportation Research Record 2238, no. 1 (2011): 8-14.
Technical Report

Development of a Freight Benefit/Cost Methodology for Project Planning

 
Download PDF  (1.32 MB)
Publication: Washington State Department of Transportation, Pacific NW Transportation Consortium (PacTrans)
Publication Date: 2013
Summary:
Future reauthorizations of the federal transportation bill will require a comprehensive and quantitative analysis of the freight benefits of proposed freight system projects. To prioritize public investments in freight systems and to ensure consideration of the contribution of freight to the overall system performance, states and regions need an improved method to analyze freight benefits associated with proposed highway and truck intermodal improvements that would lead to enhanced trade and sustainable economic growth, improved safety and environmental quality, and goods delivery in Washington State.
This project develops a process to address this need by building on previous and ongoing research by some project team members to develop an agency-friendly, data-supported framework to prioritize public investments for freight systems in Washington and Oregon. The project integrates two ongoing WSDOT-funded efforts: one to create methods to calculate the value of truck and truck-intermodal infrastructure projects and the other to collect truck probe data from commercial GPS devices to create a statewide Freight Performance Measures (FPM) program. This integration informs the development of a framework that allows public agencies to quantify freight investment benefits in specific areas such as major freight corridors and across borders.

 

 

Authors: Dr. Anne GoodchildDr. Ed McCormack, Ken Casavant, Zun Wang, B Starr McMullen, Daniel Holder
Recommended Citation:
Casavant, Ken, Anne Goodchild, Ed McCormack, Zun Wang, B. Starr McMullen, and Daniel Holder. "Development of a Freight Benefit/Cost Methodology for Project Planning." 
Paper

Examining the Differential Responses of Shippers and Motor Carriers to Travel Time Variability

Publication: International Journal of Applied Logistics
Volume: 3 (1)
Pages: 39-53
Publication Date: 2012
Summary:

Shippers and motor carriers are impacted by and react differently to travel time variability due to their positions within the supply chain and end goals. Through interviews and focus groups these differences have been further examined. Shippers, defined here as entities that send or receive goods, but do not provide the transportation themselves, are most often concerned with longer-term disruptions, which are typically considered within the context of transportation system resilience. Motor carriers, defined here as entities engaged in transporting goods for shippers, are most often concerned with daily travel time variability from events such as congestion. This paper describes the disparity in concerns and the strategies shippers and motor carriers are likely to engage in to address time travel variability. This knowledge allows for a better understanding of how investments to mitigate travel time variability will impact shippers and motor carriers.

Authors: Dr. Anne GoodchildDr. Ed McCormack, Kelly Pitera
Recommended Citation:
Goodchild, Anne V., Kelly Pitera, and Edward McCormack. "Examining the differential responses of shippers and motor carriers to travel time variability." International Journal of Applied Logistics (IJAL) 3, no. 1 (2012): 39-53.
Paper

A Framework for Determining Highway Truck-Freight Benefits and Economic Impacts

 
Download PDF  (0.84 MB)
Publication: Journal of the Transportation Research Forum
Volume: 52
Pages: 27-43
Publication Date: 2013
Summary:
This paper proposes a method for calculating both the direct freight benefits and the larger economic impacts of transportation projects. The identified direct freight benefits included in the methodology are travel time savings, operating cost savings, and environmental impacts. These are estimated using regional travel demand models (TDM) and additional factors. Economic impacts are estimated using a regional Computable General Equilibrium (CGE) model. The total project impacts are estimated combining the outputs of the transportation model and an economic model. A Washington State highway widening project is used as a case study to demonstrate the method. The proposed method is transparent and can be used to identify freight specific benefits and generated impacts.
Though the Washington State Department of Transportation (WSDOT) has a long standing Mobility Project Prioritization Process (MPPP) (WSDOT 2000), which is a Benefit-Cost Analysis (BCA) framework used for mobility program assessment, it does not separately evaluate or account for the truck freight benefits of proposed highway infrastructure projects. It is therefore unable to evaluate and consider the economic impacts of highway projects that accrue to freight-dependent industries (those heavily reliant on goods movement) or non-freight-dependent firms (service sector) that are perhaps indirectly impacted by the productivity of the freight system. The established evaluation criteria of any transportation project largely influences the project selection and direction, thus for freight to become an integrated component of a managing agency’s transportation program, it must be recognized and acknowledged through the project evaluation criteria (NCHRP 2007). Before implementing any freight project evaluation criteria, an agency must first be able to identify the measures that matter to freight and freight-related systems. At this time there is no known nationally accepted framework for analyzing the full range of freight-related impacts stemming from transportation infrastructure projects. Complex interactions with separate, but not isolated, effects among economic, environmental, and social components with sometimes conflicting priorities make freight impacts more difficult to measure than those of other highway users (Belella 2005).
To successfully compete in a new funding world with significantly reduced monies for transportation infrastructure, states must become even more pragmatic about the means by which they emphasize and prioritize investments. Identification of the necessity to include freight performance measures in local, state, and national transportation plans, and rise above anecdotal understandings of system performance, is becoming evident as more municipalities and state agencies move toward implementing freight-related plans (MnDOT 2008, Harrison et al. 2006). Therefore, WSDOT has undertaken the development of an improved methodology to assess highway truck-freight project benefits designed to be integrated into the department’s existing prioritization processes. This paper lays out the development process of this effort and the resulting methodology. The contribution of this paper to the literature is to present a methodology that includes a truck-specific determination of the economic value of a project in addition to the economic impacts captured by a regional Highway Truck-Freight Benefits 28 computable general equilibrium (CGE) framework. The proposed method is transparent, and can be used to identify freight-specific benefits and generated impacts.
The remainder of this paper is organized as follows: the second section provides a brief review of the state of practice in the evaluation of transportation infrastructure investments; the third section details the process by which the benefits to be included in the analysis were selected and the methodology subsequently developed; the next section applies the methodologies to a case study and provides its result; the last section offers conclusions of the proposed methodology as well as the limitations of the study and directions for future work on fully incorporating freight into state DOT investment decisions.

 

 

Recommended Citation:
Wang, Zun, Jeremy Sage, Anne Goodchild, Eric Jessup, Kenneth Casavant, and Rachel L. Knutson. "A framework for determining highway truck-freight benefits and economic impacts." In Journal of the Transportation Research Forum, vol. 52, no. 1424-2016-118048, pp. 27-43. 2013.

Estimating Truck Trips with Product Specific Data: A Disruption Case Study in Washington potatoes

Publication: Transportation Letters
Volume: 4 (3)
Pages: 153-166
Publication Date: 2012
Summary:

Currently, knowledge of actual freight flows in the US is insufficient at a level of geographic resolution that permits corridor-level freight transportation analysis and planning. Commodity specific origins, destinations, and routes are typically estimated from four-step models or commodity flow models. At a sub-regional level, both of these families of models are built on important assumptions driven by the limited availability of data. This study was motivated by a desire to determine whether efforts to gather corridor-level freight movement data will bring significant new insights over current approaches to freight transportation modeling. Through a case study of Washington State’s potato and value added potato products industry, we show that significant insight can be gained by collecting commodity-specific truck trip generation and destination data: the approach allows product specific truck trips to be estimated for each roadway link. When considering a network change, the number of affected trips can be identified, and their re-route distance quantified.

Authors: Dr. Anne Goodchild, Derik Andreoli, Eric Jessup
Recommended Citation:
Derik Andreoli, Anne Goodchild & Eric Jessup (2013). Estimating Truck Trips with Product Specific Data: A Disruption Case Study in Washington Potatoes, Transportation Letters, 4:3, 153-166, DOI: 10.3328/TL.2012.04.03.153-166
Chapter

Guide for Identifying, Classifying, Evaluating, and Mitigating Truck Freight Bottlenecks

 
Download PDF  (0.78 MB)
Publication: Transportation Research Board - NCHRP Research Report
Volume: 854
Publication Date: 2017
Summary:

The demand for truck transportation increases alongside growth in population and economic activity. As both truck and passenger traffic outstrip roadway capacity, the result is congestion, which the freight community experiences as truck bottlenecks. This NCHRP project produced a Guidebook that provides state-of-the-practice information to transportation professionals on practices and measures for identifying, classifying, evaluating, and mitigating truck freight bottlenecks. The intent is to help decision-makers in developing cost-effective solutions to address different types of truck freight bottlenecks.

The Guidebook is designed for use by transportation planners and research and operational staff. Its contents

  • Define a common language related to truck freight bottlenecks
  • Classify truck freight bottleneck categories based on causal and contributing factors
  • Describe truck bottleneck state of the practice
  • Provide highlights from several case studies related to truck bottlenecks
  • Describe data sources used for truck bottleneck analysis
  • Provide a spatially scalable methodology for identifying truck freight bottlenecks
  • Describe quantitative measures for truck freight bottleneck categories for determining bottleneck severity, impact, and ranking and subsequent decision-making
  • Describe mitigation options for truck freight bottlenecks
  • Describe how to integrate freight bottleneck analysis into the planning process.

The Guidebook embraces a broad term for “truck freight bottlenecks” as any condition that acts as an impediment to efficient truck travel, thereby leading to travel times in excess of what would normally occur. This definition encompasses a wide range of events and conditions, all of which add time to the delivery of truck freight shipments, from the time those shipments leave their origin to the time they arrive at their destination.

The Guidebook describes two methodologies for identifying truck freight bottlenecks:

  • A travel speed-based delay methodology, and
  • A process or operation delay-based methodology.

The bottleneck analysis described in the Guidebook focuses on utilizing truck probe data rather than traditional travel demand models. Truck probe speed data can be used in conjunction with other data sources (e.g., crash data, weather data, volume data) to identify the causes of bottlenecks. The methodologies are scalable in multiple ways, and this will allow agencies to use their available data resources regardless of the source or size of those resources. In addition, the same analytical approach will work whether the analysis is performed for an entire state highway network, a regional network, or even a specific city. The recommended approach can also be applied to a single road segment, multiple roads within a geographic corridor, an entire region, to all roads in the state, or to all roads in a multistate region. Finally, the methodology can be used to demonstrate the benefit of bottleneck improvements to truckers, policy decision-makers, and the general public. This is particularly true for bottlenecks based on operational restrictions (such as geometric or height restrictions or truck bans).

Authors: Dr. Anne GoodchildDr. Ed McCormack, Dike Ahanotu, Richard Margiotta, Bill Eisele, Mark Hallenbeck
Recommended Citation:
Ahanotu, Dike, Richard Margiotta, Bill Eisele, Mark Hallenbeck, Anne Goodchild, and Ed McCormack. (2017) Guide for Identifying, Classifying, Evaluating, and Mitigating Truck Freight Bottlenecks. Transportation Research Board. Project 08-98. 2017.
Paper

Identifying Truck Route Choice Priorities: The Implications for Travel Models

Publication: Transportation Letters
Volume: 6 (2)
Pages: 98-106
Publication Date: 2014
Summary:

This article identifies the truck routing priorities of freight companies through a survey of Washington state shippers, carriers, and receivers. To elicit these priorities, the survey prompted the respondents to rate 15 items believed to affect route choice decision making with respect to each item’s influence on route choice. Item response theory (IRT) and latent class analysis (LCA) highlights priorities that were common among all survey respondents and priorities that were different among the sample.

Minimizing cost and meeting customer requirements were priorities for all. The influence of other items such as road grade, hours of service limits, and driver availability depended on whether the respondent was best described as a long-haul, local-regional, or urban trucking provider. These three classes of companies were derived from the LCA, and each class has a distinct response pattern to the 15 routing items. This result suggests that truck routing priorities are not constant and uniform across a state’s trucking industry but rather variable and largely dependent on trip length. The paper concludes with practical recommendations as to how these priorities can be implemented within a truck routing model.

Authors: Dr. Anne Goodchild, Maura Rowell, Andrea Gagliano
Recommended Citation:
Rowell, Maura, Andrea Gagliano, and Anne Goodchild. "Identifying Truck Route Choice Priorities: The Implications for Travel Models." Transportation Letters 6, no. 2 (2014): 98-106. 
Paper

Estimating Truck Trips with Product Specific Data: A Disruption Case Study in Washington Potatoes

Publication: Transportation Letters: The International Journal of Transportation Research
Volume: 4 (3)
Publication Date: 2013
Summary:

Currently, knowledge of actual freight flows in the US is insufficient at a level of geographic resolution that permits corridor-level freight transportation analysis and planning. Commodity specific origins, destinations, and routes are typically estimated from four-step models or commodity flow models. At a sub-regional level, both of these families of models are built on important assumptions driven by the limited availability of data. This study was motivated by a desire to determine whether efforts to gather corridor-level freight movement data will bring significant new insights over current approaches to freight transportation modeling. Through a case study of Washington State’s potato and value added potato products industry, we show that significant insight can be gained by collecting commodity-specific truck trip generation and destination data: the approach allows product specific truck trips to be estimated for each roadway link. When considering a network change, the number of affected trips can be identified, and their re-route distance quantified.

Authors: Dr. Anne Goodchild, Derik Andreoli, Eric Jessup
Recommended Citation:
Derik Andreoli, Anne Goodchild & Eric Jessup (2012) Estimating truck trips with product specific data: a disruption case study in Washington potatoes, Transportation Letters, 4:3, 153-166, https://doi.org/10.3328/TL.2012.04.03.153-166