Skip to content
Paper

Delivery Process for an Office Building in the Seattle Central Business District

 
Download PDF  (1.43 MB)
Publication: Transportation Research Record: Journal of the Transportation Research Board
Volume: Transportation Research Board 97th Annual Meeting
Publication Date: 2018
Summary:

Movement of goods within a central business district (CBD) can be very constraining with high levels of congestion and insufficient curb spaces. Pick-up and delivery activities encompass a significant portion of urban goods movement and inefficient operations can negatively impact the already highly congested areas and truck dwell times. Identifying and quantifying the delivery processes within the building is often difficult.

This paper introduces a systematic approach to examine freight movement, using a process flow map with quantitative delivery times measured during the final segment of the delivery process. This paper focuses on vertical movements such as unloading/loading activities, taking freight elevators, and performing pick-up/delivery operations. This approach allows us to visualize the components of the delivery process and identify the processes that consume the most time and greatest variability. Using this method, the authors observed the delivery process flows of an office building in downtown Seattle, grouped into three major steps: 1. Entering, 2. Delivering, 3. Exiting. This visualization tool provides researchers and planners with a better understanding of the current practices in the urban freight system and helps identify the non-value-added activities and time that can unnecessarily increase the overall delivery time.

Authors: Haena KimDr. Anne Goodchild, Linda Ng Boyle
Recommended Citation:
Kim, Haena, Linda Ng Boyle, and Anne Goodchild. "Delivery Process for an Office Building in the Seattle Central Business District." Transportation Research Record 2672, no. 9 (2018): 173-183. 
Paper

Urban Form and Last-Mile Goods Movement: Factors Affecting Vehicle Miles Travelled and Emissions

 
Download PDF  (0.04 MB)
Publication: Transportation Research Part D: Transport and Environment
Volume: 61 (A)
Pages: 217-229
Publication Date: 2018
Summary:

There are established relationships between urban form and passenger travel, but less is known about urban form and goods movement. The work presented in this paper evaluates how the design of a delivery service and the urban form in which it operates affects its performance, as measured by vehicle miles traveled, CO2, NOx, and PM10 emissions.

This work compares simulated amounts of VMT, CO2, NOx, and PM10 generated by last-mile travel in several different development patterns and in many different goods movement structures, including various warehouse locations. Last-mile travel includes personal travel or delivery vehicles delivering goods to customers. Regression models for each goods movement scheme and models that compare sets of goods movement schemes were developed. The most influential variables in all models were measures of roadway density and proximity of a service area to the regional warehouse.

These efforts will support urban planning for goods movement, inform policies designed to mitigate the impacts of goods movement vehicles, and provide insights into achieving sustainability targets, especially as online shopping and goods delivery become more prevalent.

Authors: Dr. Anne Goodchild, Erica Wygonik
Recommended Citation:
Wygonik, Erica and Anne Goodchild. (2018) Urban Form and Last-Mile Goods Movement: Factors Affecting Vehicle Miles Travelled and Emissions. Transportation Research. Part D, Transport and Environment, 61, 217–229. https://doi.org/10.1016/j.trd.2016.09.015
Student Thesis and Dissertations

Preparing Cities for Package Demand Growth: Predicting Neighborhood Demand and Implementing Truck VMT Reduction Strategies

Publication Date: 2018
Summary:

E-commerce has empowered consumers to order goods online from anywhere in the world with just a couple of clicks. This new trend has led to significant growth in the number of package deliveries related to online shopping. Seattle’s freight infrastructure is challenged to accommodate this freight growth. Commercial vehicles can already be seen double parked or parked illegally on the city’s streets impacting traffic flow and inconveniencing other road users. It is vital to understand how the package demand is growing in the neighborhoods and what freight trips reduction strategies can cities implement to mitigate the freight growth. The purpose of the research is to analyze Vehicle Miles Traveled (VMT) reduction strategies in the neighborhoods with different built environment characteristics. First, the impact of individual factors on person’s decision to order goods online for home delivery is analyzed. A predictive model was built that estimates online order probability based on these factors. This model is then applied to synthetic Seattle population to produce estimated demand levels in each neighborhood. Second, two VMT reduction strategies were modeled and analyzed: 1) decreasing number of trucks needed to deliver neighborhoods’ package demand and 2) package locker implementation. Based on packages demand and built environment characteristics, two neighborhoods were chosen for a case study. ArcGIS toolbox was developed to generate delivery stops on the route, ArcGIS Network Analyst was used to make a delivery route and calculate VMT. It was found that VMT reduction strategies have different effects on the delivery system in two neighborhoods. Delivering neighborhoods’ demand in a smaller number of trucks would save slightly more VMT in a dense urban area compared to suburban one. Moreover, since the traffic perception by different road users varies by neighborhood, VMT reduction strategies will be more critical to implement in dense urban areas. Locker implementation strategy will also be more effective in VMT reduction in a dense urban area due to high residential density.

Authors: Polina Butrina
Recommended Citation:
Butrina, Polina (2018). Preparing Cities for Package Demand Growth: Predicting Neighborhood Demand and Implementing Truck VMT Reduction Strategies. University of Washington Master's Degree Thesis.
Thesis: Array