Skip to content
Presentation

Using a GIS-based Emissions Minimization Vehicle Routing Problem with Time Windows (EVRPTW) Model to Evaluate CO2 Emissions and Costs: Two Case Studies Comparing Changes Within and Between Fleets

Publication: Transportation Research Board 90th Annual Meeting
Publication Date: 2010
Summary:

Growing pressure to limit greenhouse gas emissions is changing the way businesses operate. A model was developed in ArcGIS to evaluate the trade-offs between cost, service quality (represented by time window guarantees), and emissions of urban pickup and delivery systems under these changing pressures.

A specific case study involving a real fleet with specific operational characteristics is modeled as an emissions minimization vehicle routing problem with time windows (EVRPTW). Analyses of different external policies and internal operational changes provide insight into the impact of these changes on cost, service quality, and emissions. Specific considerations of the influence of time windows, customer density, and vehicle choice are included.

The results show a stable relationship between monetary cost and kilograms of CO2, with each kilogram of CO2 associated with a $3.50 increase in cost, illustrating the influence of fuel use on both cost and emissions. In addition, customer density and time window length are strongly correlated with monetary cost and kilograms of CO2 per order. The addition of 80 customers or extending the time window 100 minutes would save approximately $3.50 and 1 kilogram of CO2 per order. Lastly, the evaluation of four different fleets illustrates significant environmental and monetary gains can be achieved through the use of hybrid vehicles.

Authors: Erica Wygonik
Recommended Citation:
Wygonik, Erica and Anne V. Goodchild. “Using a GIS-based emissions minimization vehicle routing problem with time windows (EVRPTW) model to evaluate emissions and cost trade-offs in a case study of an urban delivery system.” Proc., 90th Annual Meeting of the Transportation Research Board, Transportation Research Board, Washington, DC.
Chapter

Comparison of Vehicle Miles Traveled and Pollution from Three Goods Movement Strategies

Publication: Sustainable Logistics: Transport and Sustainability (Emerald Group Publishing Limited)
Volume: Volume 6
Pages: 63-82
Publication Date: 2014
Summary:

This chapter provides additional insight into the role of warehouse location in achieving sustainability targets and provides a novel comparison between delivery and personal travel for criteria pollutants.

Purpose: To provide insight into the role and design of delivery services to address CO2, NO x , and PM10 emissions from passenger travel.Methodology/approach: A simulated North American data sample is served with three transportation structures: last-mile personal vehicles, local-depot-based truck delivery, and regional warehouse-based truck delivery. CO2, NO x , and PM10 emissions are modeled using values from the US EPA’s MOVES model and are added to an ArcGIS optimization scheme.Findings: Local-depot-based truck delivery requires the lowest amount of vehicle miles traveled (VMT), and last-mile passenger travel generates the lowest levels of CO2, NO x , and PM10. While last-mile passenger travel requires the highest amount of VMT, the efficiency gains of the delivery services are not large enough to offset the higher pollution rate of the delivery vehicle as compared to personal vehicles.

Practical implications: This research illustrates the clear role delivery structure and logistics have in impacting the CO2, NO x , and PM10 emissions of goods transportation in North America.

Social implications: This research illustrates the tension between goals to reduce congestion (via VMT reduction) and CO2, NO x , and PM10 emissions.

Originality/value: This chapter provides additional insight into the role of warehouse location in achieving sustainability targets and provides a novel comparison between delivery and personal travel for criteria pollutants.

Authors: Dr. Anne Goodchild, Erica Wygonik
Recommended Citation:
Wygonik, Erica, and Anne Goodchild. "Comparison of vehicle miles traveled and pollution from three goods movement strategies." Sustainable Logistics, pp. 63-82. Emerald Group Publishing Limited, 2014.