Skip to content

Long-Term Planning for a Mixed Urban Freight Fleet with EVs and ICEVs in the USA

Download PDF  (0.54 MB)
Publication: Sustainability
Volume: 16 (8)
Publication Date: 2024

Commercial electric vehicles (EVs) have increasingly gained interest from urban freight companies in the past decade due to the introduction of economic and policy drivers. Although these factors promote urban freight electrification, some barriers hinder the transition to fully electric fleets, such as the significant monetary investment required to replace the current internal combustion engine vehicles (ICEV) and the lack of readily available electric freight vehicles. Due to these barriers, for the foreseeable future, urban freight companies will operate mixed fleets with a combination of EVs and ICEVs to balance their cost/benefit trade-offs. This intermediate operational stage will allow companies to adjust their operations, test EVs, and decide if a fully electric fleet is the best choice.

This paper focuses on urban last-mile deliveries in the USA and proposes a long-term planning model to explore the effects of external factors (i.e., fuel costs) on planning decisions (i.e., EV share) for a mixed fleet. In the context of this paper long-term planning is the planning for the infrastructure needed for the introduction of EVs (i.e., fleet composition and charging station location). The goal of the proposed model is to minimize the fuel, EV, ICEV, and EV charger costs.

The results show that the EV share of a mixed fleet is affected by gasoline and electricity prices and the distances traveled in a given network. This paper shows that the EV share of a mixed fleet increases when the gasoline cost increases and the electricity cost decreases.

Recommended Citation:
Goulianou, Panagiota, Amelia Regan, and Anne Goodchild. 2024. "Long-Term Planning for a Mixed Urban Freight Fleet with EVs and ICEVs in the USA." Sustainability 16, no. 8: 3144.

EVs Need Charging Infrastructure. Is Urban Freight Any Different? (Part I)

Publication: Goods Movement 2030: An Urban Freight Blog
Publication Date: 2022

How can charging infrastructure spark urban freight electrification?

With billions of federal dollars to be invested in building out the country’s charging network, EVs (Electric Vehicles) will soon be getting more places to juice up than ever before. The colossal infrastructure undertaking is meant to keep up with surging EV demand, projected to make up a quarter of all new car sales by 2025. For instance, meeting Seattle’s target of putting 174,000 passenger EVs on the road by 2030 will require 2,900 public Level 2 chargers and 860 DC fast chargers. That number is over five times more than the total chargers installed since 2019.

But estimates for charging stations often overlook the diverse plug-in needs of large commercial semi-trucks, box trucks, service and construction vehicles as well as smaller delivery vans and even electric cargo bicycles. Ramping up commercial fleet electrification will likely require cities, businesses, developers, and utility providers to reshape charging strategies.

So when it came to this month’s member meeting, UFL researchers wanted to know: how can charging infrastructure spark urban freight electrification? This blog discusses what the team had to say.

Authors: Travis Fried
Recommended Citation:
"EVs Need Charging Infrastructure. Is Urban Freight Any Different? (Part I)" Goods Movement 2030 (blog). Urban Freight Lab, August 13, 2022.

EVs Need Charging Infrastructure. Is Urban Freight Any Different? (Part II)

Publication: Goods Movement 2030: an Urban Freight Blog
Publication Date: 2022

Is public charging a realistic option for urban freight?

In Part 1, we focused our discussion on electrifying urban freight on grid capacity and installing the correct charger for the job. In this post, we continue the discussion by exploring an avenue for charging infrastructure: publicly available chargers.

Asked about their plans for electrifying urban freight fleets during August’s meeting, Urban Freight Lab (UFL) members stated they would rely primarily on depot charging: Trucks and vans would charge overnight in private facilities. These members agreed that public charging (i.e., curbside charging) was not key to electrifying the last-mile delivery sector. Policy research groups seem to support this take on charging needs. The International Council on Clean Transportation (ICCT) in 2021 estimated that more than 2 million depot-based chargers will be needed in the U.S. by 2050 to meet charging demand. When it comes to public chargers, they estimate that need will be fewer than 300,000. That same year, Atlas Public Policy estimated that 75-90% of freight-related charging will occur at depots.

Both reports suggest, however, that investment is still needed in public charging infrastructure. Why? Because more than 90% of trucking companies in the U.S. are owner-operators or small fleets of 6 trucks or fewer. These small companies represent only 18-20% of trucks on the road, but they may lack the financial resources to install a truck or van charger and/or access to depot-based overnight charging.

With that in mind we address the question: Is public charging a realistic option for urban freight?

Authors: Thomas Maxner
Recommended Citation:
"EVs Need Charging Infrastructure. Is Urban Freight Any Different? (Part II)" Goods Movement 2030 (blog). Urban Freight Lab, December 10, 2022.

NYC Zero-Emissions Urban Freight and Green Loading Zones Market Research

Download PDF  (3.99 MB)
Publication Date: 2022

In an effort to reduce emissions from last-mile deliveries and incentivize green vehicle adoption, The New York City Department of Transportation (NYC DOT) is seeking to implement a Green Loading Zone (GLZ) pilot program. A Green Loading Zone is curb space designated for the sole use of “green” vehicles, which could include electric and alternative fuel vehicles as well as other zero-emission delivery modes like electric-assist cargo bikes. To inform decisions about the program’s siting and regulations, this study was conducted by the University of Washington’s Urban Freight Lab (UFL) in collaboration with NYC DOT under the UFL’s Technical Assistance Program.

The study consists of three sources of information, focusing primarily on input from potential GLZ users, i.e., delivery companies. An online survey of these stakeholders was conducted, garnering 13 responses from 8 types of companies. Interviews were conducted with a parcel carrier and an electric vehicle manufacturer. Additionally, similar programs from around the world were researched to help identify current practices. The major findings are summarized below, followed by recommendations for siting, usage restriction and pricing of GLZs. It is important to note that these recommendations are based on the survey and interview findings and thus on benefits to delivery companies. However, other important factors such as environmental justice, land use patterns, and budgetary constraints should be considered when implementing GLZs.

Literature Review Findings

Green Loading Zones are a relatively novel approach to incentivizing electric vehicle (EV) adoption. Two relevant pilot programs exist in the United States, one in Santa Monica, CA and the other one in Los Angeles, CA. Both are “zero-emission” delivery programs, meaning alternative fuel vehicles that reduce emissions (compared to fossil fuel vehicles) are not included in the pilot’s parking benefits (dedicated spaces and free parking). Other cities including Washington, DC and Vancouver, Canada are also creating truck-only zones and dedicating parking to EVs in their efforts to reduce emissions. Bremen, Germany also has a similar program called an Environmental Loading Point.

Many cities in Europe are implementing low- or zero-emission zones. These are different than GLZs in that entire cities or sections of cities are restricted to vehicles that meet certain emissions criteria. London, Paris, and 13 Dutch municipalities are all implementing low-emission zones. These zones have achieved some success in reducing greenhouse gas emissions: in London, CO2 from vehicles has been reduced by 13 percent. Companies operating in those cities have opted to purchase cleaner vehicles or to replace trucks with alternative modes like cargo bikes. In addition to demonstrating similar goals as NYC DOT, these programs provide insights to the siting and structure of GLZs. Loading zones have been selected based on equity concerns, delivery demand, and commercial density. Every city in the literature review has installed specific signage for the programs to clearly convey the regulations involved.

Survey and interview Findings

A range of company types replied to the survey: parcel carriers (large shippers), small shippers, e-commerce and retail companies, freight distributors, a truck dealer, a liquid fuel delivery company, and a logistics NYC  association (answering on behalf of members). The majority of these companies will be increasing their fleet sizes over the next ten years, and most plan to increase the share of EVs in their fleets while doing so. A smaller share (4 of 13) also plans to increase their share of alternative fuel vehicles. The most cited reasons for increasing fleet size and green vehicle share are: 1) internal sustainability goals, 2) social responsibility, and 3) new vehicles/models coming to the market.

Green vehicle adoption is not without its challenges. For EV adoption specifically, companies identified three major barriers: 1) competition in the EV market, 2) electric grid requirements upstream of company-owned facilities, and 3) lack of adequate government-supported purchasing subsidies. To overcome these barriers, respondents would like larger or more government purchasing incentives and reduced toll or parking rates for EVs. However, the majority of companies also expressed a willingness to pay for GLZs at similar rates to other commercial loading zones.

As for area coverage, all respondents deliver to Manhattan, Queens, and Brooklyn. 11 of 13 deliver to Staten Island and the Bronx as well. All EV and cargo bike operators deliver to Manhattan, whereas only one EV operator and one cargo bike operator deliver to all five boroughs of NYC. Respondents deliver at all times of day, but the busiest times are between 9:00AM and 4:00PM (stated by 8 of 13 respondents). Peak periods are busiest for four companies in the morning (6:00AM-9:00AM) and six companies in the evening (4:00PM-9:00PM).

The interviews supported findings from the survey. Both interviewed companies have a vested interest in reducing their environmental footprint and plan to use or produce exclusively zero-emission vehicles by 2050 (carrier) or 2035 (manufacturer). However, they noted challenges to electrifying entire fleets for cities. Charging infrastructure needs to be expanded, but incentives are also needed (parking benefits, subsidies, expedited permitting) to make the market viable for many delivery companies.


The preceding findings informed four key recommendations:

  • GLZs should be made available to multiple modes: green vehicles and cargo bikes. Adequate curb space might be needed to accommodate multiple step-side vans plus a small vehicle and cargo bikes, but this should be balanced against curb utilization rates and anticipated dwell times to maximize curb use.
  • Explore piloting GLZs in Lower Manhattan and commercial areas of Midtown Manhattan; they could be the most beneficial locations for the pilot according to survey respondents.
  • The preferred layout for GLZs is several spaces distributed across multiple blocks.
  • DOT can charge for the GLZ use. It is recommended that rates not exceed current parking prices in the selected neighborhood, but some companies are willing to pay a modest increase over that rate to avoid parking tickets.


Recommended Citation:
Urban Freight Lab (2022). NYC Zero-Emissions Urban Freight and Green Loading Zones Market Research.

Using a GIS-based Emissions Minimization Vehicle Routing Problem with Time Windows (EVRPTW) Model to Evaluate CO2 Emissions and Costs: Two Case Studies Comparing Changes Within and Between Fleets

Publication: Transportation Research Board 90th Annual Meeting
Publication Date: 2010

Growing pressure to limit greenhouse gas emissions is changing the way businesses operate. A model was developed in ArcGIS to evaluate the trade-offs between cost, service quality (represented by time window guarantees), and emissions of urban pickup and delivery systems under these changing pressures.

A specific case study involving a real fleet with specific operational characteristics is modeled as an emissions minimization vehicle routing problem with time windows (EVRPTW). Analyses of different external policies and internal operational changes provide insight into the impact of these changes on cost, service quality, and emissions. Specific considerations of the influence of time windows, customer density, and vehicle choice are included.

The results show a stable relationship between monetary cost and kilograms of CO2, with each kilogram of CO2 associated with a $3.50 increase in cost, illustrating the influence of fuel use on both cost and emissions. In addition, customer density and time window length are strongly correlated with monetary cost and kilograms of CO2 per order. The addition of 80 customers or extending the time window 100 minutes would save approximately $3.50 and 1 kilogram of CO2 per order. Lastly, the evaluation of four different fleets illustrates significant environmental and monetary gains can be achieved through the use of hybrid vehicles.

Authors: Erica Wygonik
Recommended Citation:
Wygonik, Erica and Anne V. Goodchild. “Using a GIS-based emissions minimization vehicle routing problem with time windows (EVRPTW) model to evaluate emissions and cost trade-offs in a case study of an urban delivery system.” Proc., 90th Annual Meeting of the Transportation Research Board, Transportation Research Board, Washington, DC.