Skip to content
Paper

Do Commercial Vehicles Cruise for Parking? Empirical Evidence from Seattle

 
Download PDF  (5.46 MB)
Publication: Transport Policy
Volume: 97
Pages: 26-36
Publication Date: 2020
Summary:

Parking cruising is a well-known phenomenon in passenger transportation, and a significant source of congestion and pollution in urban areas. While urban commercial vehicles are known to travel longer distances and to stop more frequently than passenger vehicles, little is known about their parking cruising behavior, nor how parking infrastructure affect such behavior.

In this study we propose a simple method to quantitatively explore the parking cruising behavior of commercial vehicle drivers in urban areas using widely available GPS data, and how urban transport infrastructure impacts parking cruising times.

We apply the method to a sample of 2900 trips performed by a fleet of commercial vehicles, delivering and picking up parcels in Seattle downtown. We obtain an average estimated parking cruising time of 2.3 minutes per trip, contributing on average for 28 percent of total trip time. We also found that cruising for parking decreased as more curb-space was allocated to commercial vehicles load zones and paid parking and as more off-street parking areas were available at trip destinations, whereas it increased as more curb space was allocated to bus zone.

Recommended Citation:
Dalla Chiara, Giacomo, & Goodchild, Anne. (2020) Do Commercial Vehicles Cruise for Parking? Empirical Evidence from Seattle. Transport Policy, 97, 26-36. https://doi.org/10.1016/j.tranpol.2020.06.013
Report

The Final 50 Feet of the Urban Goods Delivery System: Tracking Curb Use in Seattle

 
Download PDF  (4.54 MB)
Publication Date: 2019
Summary:

Vehicles of all kinds compete for parking space along the curb in Seattle’s Greater Downtown area. The Seattle Department of Transportation (SDOT) manages use of the curb through several types of curb designations that regulate who can park in a space and for how long. To gain an evidence-based understanding of the current use and operational capacity of the curb for commercial vehicles (CVs), SDOT commissioned the Urban Freight Lab (UFL) at the University of Washington Supply Chain Transportation & Logistics Center to study and document curb parking in five selected Greater Downtown areas.

This study documents vehicle parking behavior in a three-by-three city block grid around each of five prototype Greater Downtown buildings: a hotel, a high-rise office building, an historical building, a retail center, and a residential tower. These buildings were part of the UFL’s earlier SDOT-sponsored research tracking how goods move vertically within a building in the final 50 feet.

The areas around these five prototype buildings were intentionally chosen for this curb study to deepen the city’s understanding of the Greater Downtown area.

Significantly, this study captures the parking behavior of commercial vehicles everywhere along the curb as well as the parking activities of all vehicles (including passenger vehicles) in commercial vehicle loading zones (CVLZs). The research team documented: (1) which types of vehicles parked in CVLZs and for how long, and; (2) how long commercial vehicles (CVs) parked in CVLZs, in metered parking, and in passenger load zones (PLZ) and other unauthorized spaces.

Four key findings, shown below, emerged from the research team’s work:

  1. Commercial and passenger vehicle drivers use CVLZs and PLZs fluidly: commercial vehicles are parking in PLZs, and passenger vehicles are parking in CVLZs. Passenger vehicles made up more than half of all vehicles observed parking in CVLZs (52%). More than one-quarter of commercial vehicle drivers parked in PLZs (26 %.) This fact supports more integrated planning for all curb space, versus developing standalone strategies for passenger vehicle and for commercial vehicle parking.
  2. Most commercial vehicle (CV) demand is for short-term parking: 15 or 30 minutes. Across the five locations, more than half (54%) of all CVs parked for 15 minutes or less in all types of curb spaces. Nearly three-quarters of all CVs (72%) parked for 30 minutes or less. When considering just the delivery CVs, an even higher percentage, 60%, parked for 15 minutes or less. Eighty-one percent of the delivery CVs parked for 30 minutes or less.
  3. Thirty-six percent of the total CVs parked along the curb were service CVs, showing the importance of factoring their behavior and future demand into urban parking schemes. In contrast to delivery CVs that predominately parked for 30 minutes or less, service CVs’ parking behavior was bifurcated. While 56% of them parked for 30 minutes or less, 44% parked for more than 30 minutes. And more than one quarter (27%) of the service CVs parked for an hour or more. Because service vehicles make up such a big share of total CVs at the curb, this may have an outsize impact on parking space turn rates at the curb.
  4. Forty-one percent of commercial vehicles parked in unauthorized locations. But a much higher percentage parked in unauthorized areas near the two retail centers (55% – 65%) when compared to the predominately office and residential areas (27% – 30%). The research team found that curb parking behavior is associated with granular, building-level urban land use. This occurred even as other factors such as the total number, length and ratio of CVLZs versus PLZs varied widely across the five study areas.

The occupancy study documents that each building and the built environment surrounding it has unique features that impact parking operations. As cities seek to more actively manage curb space, the study’s findings illuminate the need to plan a flexible network with capacity for distinct types (time and space requirements) of CV parking demand.

This study also drives home that the curb does not function in isolation, but instead forms one element of the Greater Downtown’s broader, interconnected load/unload network, which includes alleys, the curb, and private loading bays and docks. (1,2,3) SDOT commissioned this work as part of its broader effort with the UFL to map—and better understand—the entire Greater Downtown area’s commercial vehicle load/unload space network. Cities and other parties interested in the details of how to conduct a commercial vehicle occupancy study can see a step-by-step guide in Appendix C.

In this study, researchers deployed six data collectors to observe each curb study area for three days over roughly six weeks in October and December 2017. To make the data produced in this project as useful as possible, the research team designed a detailed vehicle typology to track specific vehicle categories consistently and accurately. The typology covers 10 separate vehicle categories, from various types of trucks and vans to passenger vehicles to cargo bikes. Passenger vehicles in this study were not treated as commercial vehicles, due to challenges in systematically identifying whether passenger vehicles were making deliveries or otherwise carrying a commercial permit.

The five prototype Seattle buildings studied are Seattle Municipal Tower (also the site of a common carrier parcel locker pilot), Dexter Horton, Westlake Center, and Insignia Towers. (4) The study shows how different building and land uses interact with the broader load/unload network. By collecting curb occupancy data in the same locations as their earlier work, the research team added a new layer of information to help the city evaluate—and manage—the Greater Downtown area load/unload network more comprehensively.

This report is part of a broader suite of UFL research to date that equips Seattle with an evidence-based foundation to actively and effectively manage Greater Downtown load/unload space as a coordinated network. The UFL has mapped the location and features of the legal landing spots for trucks across the Greater Downtown, enabling the city to model myriad urban freight scenarios on a block-by-block level. To the research team’s knowledge, no other city in the U.S. or the E.U. has this data trove. The findings in this report, together with all the UFL research conducted and GIS maps and databases produced to date, give Seattle a technical baseline to actively manage the Greater Downtown’s load/unload spaces as a coordinated network to improve the goods delivery system and mitigate gridlock.

The UFL will pilot such active management on select Greater Downtown streets in Seattle and Bellevue, Washington, to help goods delivery drivers find a place to park without circling the block in crowded cities for hours, wasting time and fuel and adding to congestion. The U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy under the Vehicles Technologies Office is funding the project. (5) The project partners will integrate sensor technologies, develop data platforms to process large data streams, and publish a prototype app to let delivery firms know when a parking space is open – and when it’s predicted to be open so they can plan to arrive when another truck is leaving. This is the nation’s first systematic research pilot to test proof of concept of a functioning system that offers commercial vehicle drivers and dispatchers real-time occupancy data on load/unload spaces–and test what impact that data has on commercial driver behavior. This pilot can help inform other cities interested in taking steps to actively manage their load/unload network.

Actively managing the load/unload network is more imperative as the city grows denser, the e-commerce boom continues, and drivers of all vehicle types—freight, service, passenger, ride-sharing and taxis—jockey for finite (and increasingly valuable) load/unload space. Already, Seattle ranks as the sixth most-congested city in the country.

The UFL is a living laboratory made up of retailers, truck freight carriers and parcel companies, technology companies supporting transportation and logistics, multifamily residential and retail/commercial building developers and operators, and SDOT. Current members are Boeing HorizonX, Building Owners and Managers Association (BOMA) – Seattle King County, curbFlow, Expeditors International of Washington, Ford Motor Company, General Motors, Kroger, Michelin, Nordstrom, PepsiCo, Terreno, USPack, UPS, and the United States Postal Service (USPS).

Recommended Citation:
Urban Freight Lab (2019). The Final 50 Feet of the Urban Goods Delivery System: Tracking Curb Use in Seattle.
Paper

Understanding the Use of the Curb Space and Alley for Unloading and Loading Operations: A Seattle Case Study

 
Download PDF  (0.11 MB)
Publication: VREF: Current Issues Influencing Urban Freight Research
Publication Date: 2018
Summary:

Purpose: The increasing growth of e-commerce has been putting pressure on local governments to rethink how they manage street curb parking and alley operations for trucks and other delivery vehicles. Many studies state that the competition for space among road users and the lack of adequate infrastructure force delivery drivers to either search for vacant spaces or park in unsuitable areas; which negatively impacts road capacity and causes inconvenience to other users of the road (Butrina et al. (2017); Dablanc & Beziat (2015); Aiura & Taniguchi (2005)).

However, local governments often lack data about the current usage of the parking infrastructure, which is necessary to make well-informed decisions regarding freight planning, especially in dense, constrained urban areas.

For these reasons, the purpose of this research is to address the lack of information regarding the usage of the infrastructure at the public right of way used for freight and parcel load and unload operations.

Research Approach:  The approach of this research is quantitative. The SCTL research team developed two independent data collection replicable methods to quantify the usage of (i) curb spaces and (ii) alleys in selected areas of Seattle’s One Center City.

Findings and Originality: This research presents two case studies for selected areas in Seattle’s One Center City area. The first one documents and analyzes the duration and types of curb spaces used by delivery vehicles in the surrounding area of five prototype buildings. We also considered all vehicles occupying on-street commercial vehicle load zones located in the study area. The second case study conducts an alley occupancy survey, looking into all parking activities (including trucks, vans, garbage collection vehicles, and passenger vehicles) in seven alleys. A total of twelve survey locations were monitored during 2-3 weekdays and 4-8 hours per day.

Research Impact: This research provides practical step-by-step methods to conduct occupancy studies of public parking for loading and loading operations, which helps to understand the current usage of a key piece of the infrastructure network. The results provide critical information to make well informed decisions regarding urban freight planning especially in dense, constrained urban areas.

Practical Impact :This research describes the steps required to develop an efficient and systematic data collection method to build a database that will provide evidence-based learning to Seattle local officials. By applying these quantitative methods, we provided decision support to pilot-test and potentially adopt solutions to improve the freight parking infrastructure performance.

Recommended Citation:
Giron-Valderrama, G., Machado-León, J. L., & Goodchild, A. Understanding the use of the curb space and alley for unloading and loading operations: A Seattle Case Study. VREF: Current Issues Influencing Urban Freight Research, 37.

A Data-Driven Simulation Tool for Dynamic Curb Planning and Management

Project Budget: $2.9M (UW amount: $500k)

Lead Institution:

  • Pacific Northwest National Lab (PNNL)

Partner Institutions:

  • Urban Freight Lab (UFL), University of Washington
  • Lawrence Berkeley National Laboratory (LBNL)
  • Lacuna Technologies, Inc. (Lacuna)
  • National Renewable Energy Laboratory (NREL)

Summary:

Curbs are a critical interfacing layer between movement and arrival in urban areas—the layer at which people and goods transition from travel to arrival—representing a primary point of resistance when joining and leaving the transportation network. Traditionally, curb spaces are statically supplied, priced, and zoned for specific usage (e.g., paid parking, commercial/passenger loading, or bus stops). In response to the growing demand for curb space, some cities are starting to be more intentional about defining curb usage. Examples of curb demand include not only traditional parking and delivery needs, but today include things like curb access requirements generated by micro delivery services, active transportation modes, and transportation network companies. And now due to the pandemic, increased demand comes from food/grocery pick-up/drop-off activities, as well as outdoor business use of curb space (e.g., outdoor restaurant seating).

Heightened demand and changing expectations for finite curb resources necessitates the implementation of new and dynamic curb management capabilities so that local decision-makers have the tools needed to improve occupancy and throughput while reducing the types of traffic disruptions that result from parking search and space maneuvering activities.

However, municipalities and cities currently lack tools that allow them to simulate the effectiveness of potential dynamic curb management policies to understand how the available control variables (e.g. price or curb space supply) can be modified to influence curb usage outcomes. On the other hand, transportation authorities and fleet managers lack the needed signage or communication platforms to effectively communicate the availability of curb space for a specified use, price, and time at scales beyond centralized lots and garages.

This project aims to develop a city-scale dynamic curb use simulation tool and an open-source curb management platform. The envisioned simulation and management capabilities will include dynamically and concurrently controlling price, number of spaces, allowed parking duration, time of use or reservation, and curb space use type (e.g., dynamic curb space rezoning based on supply and demand).

Project Objectives:

Project objectives include the following:

  • Objective 1:  The team will develop a microscale curb simulation tool to model behavior of individual vehicles with different purposes at the curb along a blockface over time of day, accounting for price, supply, function, and maximum parking time.
  • Objective 2: The team will integrate the microscale simulation tool with the LBNL’s mesoscale (city-scale) traffic simulation tool, BEAM, for simulating traffic impacts of alternative curb management strategies and their effects on citywide and regional traffic, in terms of (1) travel time, (2) throughput (people and goods) into and out of urban centers, (3) reduced energy use and emissions (from parking search and congestion), and (4) curb space utilization.
  • Objective 3: The team will develop a dynamic curbspace allocation controller for various curb users, either municipal or commercial, for the purpose of a demonstration and pilot.
  • Objective 4: The team will design, implement and test a curbside resource usage platform for fleet vehicles communications at commercial vehicle load zones (CVLZs), passenger load zones (PLZs), and transit stops.
  • Objective 5: The team will perform demonstrations with stakeholder agencies and provide pathways to practice for promising curb allocation policies.
Report

Curbing Conflicts: Curb Allocation Change Project Report

 
Download PDF  (4.05 MB)
Publication Date: 2019
Summary:

Like many congested cities, Seattle is grappling with how best to manage the increasing use of ride-hailing services by Transportation Network Companies (TNCs) like Uber and Lyft. According to a 2018 Seattle Times analysis, TNC ridership in the Seattle region has grown to more than five times the level it was in the beginning of 2015, providing, on average, more than 91,000 rides a day in 2018. And the newspaper reports Uber and Lyft trips are heavily concentrated in the city’s densest neighborhoods, where nearly 40,000 rides a day start in ZIP codes covering downtown, Belltown, Capitol Hill and South Lake Union.

This University of Washington (UW) study focuses on a strategy to manage TNC driver stops when picking up and dropping off passengers to improve traffic flow in the South Lake Union (SLU) area. SLU is the site of the main campus for Amazon, the online retail company. The site is known to generate a large number of TNC trips, and Amazon reports high rates of ride-hailing use for employee commutes. This study also found that vehicle picking-up/dropping-off passengers make up a significant share of total vehicle activity in SLU. The center city neighborhood is characterized by multiple construction sites, slow speed limits (25 mph), and heavy vehicle and pedestrian traffic.

Broad concerns about congestion, safety, and effective curb use led to this study, conducted by researchers at the UW’s Urban Freight Lab and Sustainable Transportation Lab. Amazon specifically was concerned about scarcity of curb space where TNC drivers could legally and readily stop to pick up and drop off passengers. Without dedicated load/unload curb space, TNC vehicles stop and wait at paid parking spots, other unauthorized curb spots, or in the travel lane itself, potentially blocking or slowing traffic. To try to mitigate the impacts of passenger pick-up/drop-off activity on traffic, the city proposed a strategy of increasing passenger loading zone (PLZ) spaces while Uber and Lyft implemented a geofence, which directs their drivers and passengers to designated pick-up and drop-off locations on a block. (Normally, drivers pick up or drop off passengers at any address a rider requests via the ride-hailing app.)

By providing ample designated pick-up and drop-off spots along the curb, the thinking goes, TNC drivers would reduce the frequency with which they stop in the travel lane to pick up or drop off passengers and the time they stay stopped there. By these measures, this study’s findings show the approach was successful. But it is important to note that the strategy is not a silver bullet for solving traffic congestion—nor is it designed as such. It is also important to note that any initiative to manage use of curbs and roads (by TNCs or others) is part of a city’s broader transportation policy framework and goals.

For this study, researchers analyzed an array of data on street and curb activity along three block-faces on Boren Ave N in December 2018 and January 2019. At a minimum, data were collected during the morning and afternoon peak travel times (with some collected 24 hours a day). The research team collected data using video and sensor technology as well as in-person observation. Researchers also surveyed TNC passengers for demographic, trip-related and satisfaction data. The five Amazon buildings in the area studied house roughly 8,650 employees. Researchers collected data in three stages. Phase 1, the study baseline, was before PLZs were added and geofencing started. Phase 2 was after the new PLZs were added, expanding total PLZ curb length from 20 feet (easily filled by one to two vehicles) to 274 feet. Phase 3 was after geofencing was added to the expanded PLZs. The added PLZ spaces were open to any passenger vehicle—not just TNC vehicles—weekdays from 7am to 10am and 2pm to 7pm. (Permitted food trucks were authorized from 10am to 2pm.)

Note that while other cities can learn from this analysis, the findings apply to streets with comparable traffic speed, mix of roadway users, and street design.

The study’s main findings include:

  • A significant percentage of vehicles performing a pick-up/drop-off stop in the travel lane. Those in-lane stops appear connected to the lack of available designated curb space: Adding PLZs and geofencing increased driver compliance in stopping at the curb versus stopping in the travel lane to load and unload passengers. But it was not lack of curb space alone that influenced driver activity: Between 7 percent and 10 percent of drivers still stopped in the travel lane even when PLZs were empty. After adding PLZs and geofencing, in-lane stops fell from 20 percent to 14 percent for pick-ups and from 16 percent to 15 percent for drop-offs.
  • Adding PLZs and geofencing reduced the average amount of time drivers stopped to load and unload passengers. For example, 90 percent of drop-offs took less than 1 minute 12 seconds, 42 seconds faster than the average with the added PLZs alone.
  • While curb occupancy increased after adding PLZs and geofencing, occupancy results show the current allocation of PLZ spaces is more than what is needed to meet observed demand: Average PLZ occupancy remained under 20 percent after PLZ expansion, even during peak commute hours.
  • Vehicles picking-up/dropping-off passengers account for a significant share of total traffic volume in the study area: during peak hours the observed average percentage of vehicles performing a pick-up/drop-off with respect to the total traffic volume was 29 percent (in Phase 1), 32 percent (in Phase 2) and 39 percent (in Phase 3).
  • High volumes of pedestrians (400-500 per hour on average) cross the street at points where there was no crosswalk. Passengers picked-up/dropped-off constituted a fraction (five to seven percent) of those pedestrians, but high rates of passengers (30 to 40 percent) cross the street at non-crosswalk locations.
  • Adding PLZs and geofencing did not have a significant impact on traffic safety. Researchers found no significant change in the number of observed conflicts from baseline to the addition of PLZs and geofencing. Conflicts are situations where a vehicle, bike, or pedestrian is interrupted, forced to alter their path, or engaged in a near-miss situation. Conflicts include vehicles passing in the oncoming traffic lane. • Adding PLZs and geofencing also did not produce a significant impact on roadway travel speed.
  • Of the 116 TNC passengers surveyed in the study area:
    • Roughly 40 percent to 50 percent said their trip was work related. More than half said they used ride-hailing service at least once a week and 70 percent or more used TNC alone (versus in combination with other transportation options) to get from their origin to their destination.
    • Most responded positively to the added PLZs and geofence: 79 percent rated their pick-up satisfactory and 100 percent rated their drop-off satisfactory as compared to 72 percent and 89 percent in the baseline.
    • Nearly half said they would have taken transit and one-third would have walked if ride-hailing was not available.
    • 40 percent requested a shared TNC vehicle in Phase 1 and 47 percent in Phase 3.

The study suggests that while vehicles picking-up/dropping-off passengers account for a significant share of traffic volume in SLU, they are not the primary cause of congestion. Myriad factors impact neighborhood congestion, including high vehicle volume overall and bottlenecks moving out of the neighborhood onto regional arterials. As researchers observed in the afternoon peak, these bottlenecks cause spillbacks onto local streets. Amazon garages exit vehicles onto streets that then feed into these clogged arterials.

Regarding traffic safety in SLU, this study was not designed to assess whether TNC driver behavior on average is safer or less safe than that of other vehicles. It is important to understand the safety and speed findings in the context of the SLU traffic environment. Drivers tend to drive at relatively slow speeds, navigating around high pedestrian and jaywalking volumes, and seem relatively comfortable stopping in the middle of the street for short periods of time. Due to the nature of area traffic, this seems to have relatively little impact on other drivers. Drivers appear to anticipate both this behavior and the high volumes of vehicles moving onto/off the curb and into/out of driveways and alleys.

Whether the strategy this study analyzed is recommended depends on a city’s transportation goals and approach. The researchers found the increased PLZ allocation and geofencing strategy worked in that it improved driver compliance, reduced dwell times, and boosted TNC user satisfaction. However, this may encourage commuters to use TNC. The passenger survey clearly shows that TNC service is attracting passengers who would have otherwise walked or used transit. While in the short term the increased PLZs and geofencing had a positive effect on traffic, if this induces TNC demand, there could be larger, more negative long-term consequences. If the end goal is to reduce traffic congestion, measures to reduce—rather than encourage—TNC and passenger car use as the predominant mode of commuting will yield the most substantial benefits.


In the news:

Geekwire: As Uber and Lyft pick-ups and drop-offs clog traffic, new study calls load zones a move in right direction

The Seattle Times: Seattle Uber and Lyft drivers often stop in the street to pick up or drop off riders. Here’s a way to reduce that.

Recommended Citation:
Goodchild, Anne. Giacomo dalla Chiara. Jose Luis Machado. Andisheh Ranjbari. (2019) Curb Allocation Change Project.

Managing Increasing Demand for Curb Space in the City of the Future

This research aims to develop innovative methods for managing curb lane function and curb access. The rapid rise of autonomous vehicles (AV), on-demand transportation, and e-commerce goods deliveries, as well as increased cycling rates and transit use, is increasing demand for curb space resulting in competition between modes, failed goods deliveries, roadway and curbside congestion, and illegal parking.

The research findings will improve mobility by increasing the understanding of existing curb usage and provide new solutions to city officials, planners, and engineers responsible for managing this scarce resource in the future.

The research team will work closely with several cities in the PacTrans region to ensure the study’s relevance to their needs, and that the results will be broadly applicable for other cities.

This research will allow for the development of innovative curb space designs and ensure that our urban street system may operate more efficiently, safely, and reliably for both goods and people.

Paper

Developing Design Guidelines for Commercial Vehicle Envelopes on Urban Streets (Paper)

 
Download PDF  (0.39 MB)
Publication: International Journal of Transport Development and Integration
Volume: 3:02
Pages: 132 - 143
Publication Date: 2019
Summary:

Commercial heavy vehicles using urban curbside loading zones are not typically provided with an envelope, or space adjacent to the vehicle, allocated for loading and unloading activities. While completing loading and unloading activities, couriers are required to walk around the vehicle, extend ramps and handling equipment and maneuver goods; these activities require space around the vehicle. But the unique space needs of delivery trucks are not commonly acknowledged by or incorporated into current urban design practices in either North America or Europe. Because of this lack of a truck envelope, couriers of commercial vehicles are observed using pedestrian pathways and bicycling infrastructure for unloading activities, as well as walking in traffic lanes. These actions put them and other road users in direct conflict and potentially in harm’s way.

This article presents our research to improve our understanding of curb space and delivery needs in urban areas. The research approach involved the observation of delivery operations to determine vehicle type, loading actions, door locations and accessories used. Once common practices had been identified by observing 25 deliveries, simulated loading activities were measured to quantify different types of loading space requirements around commercial vehicles. This resulted in a robust measurement of the operating envelope required to reduce conflicts between truck loading and unloading activities with adjacent pedestrian, bicycle, and motor vehicle activities. From these results, commercial loading zone design recommendations can be developed that will allow our urban street system to operate more efficiently, safely and reliably for all users.

Recommended Citation:
McCormack, Edward, Anne Goodchild, Manali Sheth, and David Hurwitz. Developing Design Guidelines for Commercial Vehicle Envelopes on Urban Streets. International Journal of Transport Development and Integration, 3(2), 132–143. https://doi.org/10.2495/TDI-V3-N2-132-143
Paper

An Empirical Analysis of Passenger Vehicle Dwell Time and Curb Management Strategies for Ride-Hailing Pick-Up/Drop-Off Operations

Publication: Transportation
Publication Date: 2023
Summary:

With the dramatic and recent growth in demand for curbside pick-up and drop-off by ride-hailing services, as well as online shopping and associated deliveries, balancing the needs of roadway users is increasingly critical. Local governments lack tools to evaluate the impacts of curb management strategies that prioritize different users’ needs. The dwell time of passenger vehicles picking up/dropping off (PUDO) passengers, including ride-hailing vehicles, taxis, and other cars, is a vital metric for curb management, but little is understood about the key factors that affect it. This research used a hazard-based duration modeling approach to describe the PUDO dwell times of over 6,000 passenger vehicles conducted in Seattle, Wash. Additionally, a before-after study approach was used to assess the effects of two curb management strategies: adding PUDO zones and geofencing. Results showed that the number of passenger maneuvers, location and time of day, and traffic and operation management factors significantly affected PUDO dwell times. PUDO operations took longer with more passengers, pick-ups (as opposed to drop-offs), vehicle´s trunk access, curbside stops, and in the afternoon. More vehicles at the curb and in adjacent travel lanes were found to be related to shorter PUDO dwell times but with a less practical significance. Ride-hailing vehicles tended to spend less time conducting PUDOs than other passenger vehicles and taxis. Adding PUDO zones, together with geofencing, was found to be related to faster PUDO operations at the curb. Suggestions are made for the future design of curb management strategies to accommodate ride-hailing operations.

Authors: José Luis Machado LeónDr. Anne Goodchild, Don MacKenzie (University of Washington College of Engineering)
Recommended Citation:
Machado-León, J.L., MacKenzie, D. & Goodchild, A. An Empirical Analysis of Passenger Vehicle Dwell Time and Curb Management Strategies for Ride-Hailing Pick-Up/Drop-Off Operations. Transportation (2023). https://doi.org/10.1007/s11116-023-10380-6
Chapter

Are Cities’ Delivery Spaces in the Right Places? Mapping Truck Load/Unload Locations

 
Download PDF  (5.67 MB)
Publication: City Logistics 2: Modeling and Planning Initiatives (Proceedings of the 2017 International Conference on City Logistics)
Volume: 2
Pages: 351-368
Publication Date: 2018
Summary:

Two converging trends – the rise of e‐commerce and urban population growth – challenge cities facing competing uses for road, curb and alley space. The University of Washington has formed a living Urban Freight Lab to solve city logistics problems that cross private and public sector boundaries. To assess the capacity of the city’s truck load/unload spaces, the lab collected GIS coordinates for private truck loading bays, and combined them with public GIS layers to create a comprehensive map of the city’s truck parking infrastructure. The chapter offers a practical approach to identify useful existent urban GIS data for little or no cost; collect original granular urban truck data for private freight bays and loading docks; and overlay the existing GIS layers and a new layer to study city‐wide truck parking capacity. The Urban Freight Lab’s first research project is addressing the “Final 50 Feet” of the urban delivery system.

Recommended Citation:
Goodchild, Anne, Barb Ivanov, Ed McCormack, Anne Moudon, Jason Scully, José Machado Leon, and Gabriela Giron Valderrama. Are Cities' Delivery Spaces in the Right Places? Mapping Truck Load/Unload Locations: Modeling and Planning Initiatives. City Logistics 2: Modeling and Planning Initiatives (2018): 351-368. 10.1002/9781119425526.ch21
Special Issue

The Curb Lane

Publication: Transportation Research Part A: Policy and Practice
Publication Date: 2021
Summary:

Efforts to regulate the curb also suffer from a lack of publicly accessible data on both the demand and supply of curb space. Cities often do not have the technical expertise to develop a curb data collection and data-sharing strategy. In addition, the private individuals and companies that generate most of the curb-use data often withhold them from public use to protect proprietary information and personal user data.

However, new uses of data sources, such as the Global Positioning System (GPS) and cellular networks, as well as the implementation of wide networks of IoT devices, are enabling the “digitization” of the curb, allowing cities to gain a better understanding of curb use as well as ways to change their approach toward curb space management.

In a way, the revolution in curb space management has already started. Many cities are re-inventing their role from passively regulating on-street parking to dynamically allocating and managing the curb, both physically and digitally, to serve many different users. Geofencing and time-dependent allocation of curb space facilitate efficient passenger pickup and drop off. Parking information systems and pay-for-parking apps enable dynamic parking allocation and pricing. We believe this is the right time for scientific research to “catch up” with current changes and to develop new analytical tools for curb space management. Such efforts are the focus of this special issue on curb lane analysis and policy.

Authors: Dr. Anne GoodchildDr. Giacomo Dalla ChiaraDr. Andisheh Ranjbari, Susan Shaheen (University of California, Berkeley), Donald Shoup (UCLA)
Recommended Citation:
Special Issue: The Curb Lane. Transportation Research Part A: Policy and Practice | ScienceDirect.com by Elsevier.