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Abstract
Most of a delivery driver’s time is spent outside the vehicle, walking the last-50-feet to 
reach the delivery customers while the vehicle is stationary. However, little is known 
about the walking component of delivery routes, while most models and algorithms used 
for scheduling and planning urban freight vehicles focus solely on the driving component. 
This study fills this research gap by providing an empirical analysis of the role of walking 
in last-mile deliveries. The study aims to empirically quantify delivery drivers’ walking 
distances and shed light on the interrelation between walking and the overall efficiency 
and sustainability of delivery routes. Two data samples were obtained that recorded more 
than 1,800 real deliveries performed by a parcel carrier and a beverage carrier in Seattle, 
WA. Data on both vehicle routes and drivers’ walking sub-routes were obtained and ana-
lyzed. Dwell time regression analyses and simulations were performed to understand the 
impact of walking on last-mile routes. The results highlighted the importance of walking 
across different types of deliveries. Both carriers either walked longer distances to find 
better parking or to serve multiple delivery customers from a single stop. The parcel car-
rier also showed large economies of scale in performing multiple deliveries per stop. An 
increase in willingness to walk showed a general reduction in the number of stops per 
route and in total vehicle miles traveled. The paper concludes with a discussion on the 
importance of walking in scheduling and planning for delivery vehicles in urban areas.

Keywords Urban freight · Walking behavior · Last-mile · Freight simulation · Freight 
parking
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Introduction

Last-mile urban deliveries are often depicted as in the left picture in Fig. 1—a delivery van 
or a truck driving through an urban neighborhood. However, an observer is much more 
likely to see something closer to the picture on the right—a parked delivery vehicle and a 
driver walking to reach a delivery customer. In fact, a delivery driver spends most of their 
time outside the vehicle, loading–unloading and walking the last-50-feet of a delivery. Dalla 
Chiara et al. (2021) documented the delivery journey of six drivers, performing from parcel 
to heavy goods and mail deliveries, and found that about 80 percent of a delivery driver’s 
time is spent parked, walking to reach the final delivery destinations, while the vehicle is 
stationary. Other authors reported similar behaviors. Allen et al. (2017) performed 25 ride-
alongs in London, UK, and found that drivers spent, on average, 62 percent of their time 
parked. However, despite most of the delivery journey taking place outside the vehicle, 
little is known about the walking behavior of delivery drivers and how walking impacts the 
overall efficiency and sustainability of delivery routes in urban areas.

Instead, most urban freight modeling and empirical analysis focused on the driving com-
ponent of a delivery route, trying to route vehicles to minimize traffic congestion and total 
distance traveled, often ignoring what, according to the current work, is the most important 
component of the delivery route: walking. With the current work, we want to recognize 
the essential role walking plays in the daily job of urban delivery workers and empirically 
quantify what we will generally refer to as delivery drivers’ walking behavior.

The journey of a delivery driver starts with a delivery manifest—a pre-planned list of 
delivery customers associated with respective addresses to which a delivery/pick-up or a 
service activity is performed. The driver then performs the assigned tour as quickly and 
safely as possible, often under strict time window constraints, facing a complex urban envi-
ronment. While sophisticated routing technologies were developed to support drivers in 
this effort (Schiller et al. 2016), even in the most advanced and largest carriers, it is still 
entirely up to the driver to choose where and how far to park the vehicle from the delivery 
customers, which and how many customers to serve from the chosen parking stop location, 
and how long to be parked for. However, in this paper, we argue that these decisions signifi-
cantly impact the overall performance and impact of an urban logistics system. With 60–80 

Fig. 1 Despite urban deliveries being associated with the picture on the left depicting a van driving, for 
most of the delivery route time, delivery vehicles are parked while drivers walk the last-50-feet (right)
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percent of a delivery driver’s time spent outside the vehicle, more data, methods, and tools 
must be paid to understand and optimize this component of urban deliveries.

We generally refer to these choices as the walking behavior of delivery drivers. The cur-
rent study objective is to empirically observe and analyze delivery drivers’ walking behavior 
and understand how walking affects a delivery route's efficiency and environmental impact, 
including the time it takes to complete all deliveries, the total vehicle miles traveled, and 
related vehicle emissions. In particular, the current paper addresses three main research 
questions:

1. How far do delivery drivers walk to reach the delivery customers?
2. How does walking behavior impact vehicle dwell times?
3. How does walking behavior impact the time it takes to complete a delivery route and 

the total vehicle miles traveled?

Understanding delivery drivers’ walking behavior is paramount for carriers to incorporate 
walking in the planning and scheduling of delivery routes and for urban planners to inte-
grate walking into urban logistics policy and infrastructure planning. The empirical results 
and methods developed in this study have direct implications for many decisions in urban 
logistics optimization, modeling, and planning, including curb management and allocation 
of commercial vehicle load zones, routing, and scheduling of commercial vehicles in urban 
areas, as well as strategies in reducing delivery vehicle miles traveled, hence promoting 
multimodal freight, including cargo bikes and portering.

To address the first research question, data samples were obtained from a parcel delivery 
carrier and a beverage delivery carrier that performed deliveries in Seattle, WA. For each 
sample, two data sources were combined to empirically analyze walking behaviors: one 
GPS tracking the delivery vehicle routes and parking locations, and one tracking the deliv-
ery drivers walking and delivery sub-routes. By combining these two data sources, it was 
possible to derive the empirical distributions of the walking distance, number of delivery 
customers served per parking stop, number of buildings visited, and delivery dwell times. 
Then, the second research question was addressed by performing a regression analysis of 
the vehicle parking dwell times on the observed walking behaviors. Finally, a simulation 
framework was developed to address the third research question. A delivery route was 
divided into space and time segments representing three main actions: driving, cruising for 
parking, and walking. Different walking behavior scenarios were tested to understand the 
impact of walking on the performance of a delivery route, including the total vehicle miles 
traveled and the time it takes to perform a route.

This empirical analysis of drivers’ walking behavior is a first step towards a more general 
understanding of drivers’ delivery behaviors, which is necessary to formulate and estimate 
better urban freight models and simulations. Current urban freight models assume a fixed 
demand of delivery stops without distinguishing between stop (where the vehicle parks) and 
delivery (where the delivery request is met). Moreover, dwell time modeling efforts often 
disregarded walking distances and time. The current work provides an empirical framework 
to study walking behavior and its impact on delivery routes.

In the next section, the relevant literature is described, and the contributions of this work 
with respect to the literature are highlighted. 3 introduces the data sources used, the sample 
data, regression model formulations, and the simulation framework. Empirical descrip-
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tive results are presented in Sect. “Descriptive results”, while regression model estimates 
and simulation results are reported in Sect. “Modeling results”. The paper concludes with 
Sect. “Conclusion and discussion”, which summarizes the key results and discusses the 
implications of the research results from the private and public sector perspectives.

Relevant literature

Walking is the oldest, the most universal, and the most common mode of transportation in 
urban areas worldwide (Volvo Research and Educational Foundations 2022). Considerable 
research efforts in the past decades focused on studying walking as a means of transport 
to access destinations and activities in urban areas (Calvert et al. 2019; Zapata-Diomedi 
2017). Given the documented benefit of walking, many researchers, urban planners, and 
public jurisdictions have started asking themself how to make cities more walkable, study-
ing the relationship between the built environment and walkability, and integrating walking 
in urban planning and design (D’Orso and Migliore 2020; Koo et al. 2022).

Walking also represents a key component to accessing other modes of transportation. 
In this regard, several studies have analyzed the role of walking in public transit, private 
vehicle transportation, biking, and shared micromobility. Walking plays a key role in deter-
mining the structure of a public transit network and its utilization, being the main mode 
used to access bus stops, subway, and rail stations (Durand et al. 2016; van Soest et al. 
2019; Louf et al. 2014)). Walking was also analyzed in the context of shared micromobility. 
Especially in a fixed station bike share network, understanding the willingness to walk is a 
key component in designing an efficient micromobility network (Mix et al. 2022). Walking 
has been identified as a major factor influencing the passenger vehicle choice of parking 
location, parking type (whether on-street or off-street), and cruising for parking time. Gillen 
(1978) formulated one of the first disaggregate models of passenger vehicle parking loca-
tion choice. He modeled this choice as a trade-off between parking fees and walking time 
(which he referred to as “egress time”) and derived elasticities for changes in price, time, 
and full cost (cost of parking fee and walking time) for different walking distances. Axhau-
sen and Polak (1991) developed a model of passenger vehicle choice between on-street and 
off-street parking as a function of four main variables: access time (driving time from ori-
gin to destination), search time (cruising for parking time), egress time (walking time) and 
parking cost (fees or expected parking tickets if double parked). Millard-Ball et al. (2019) 
further decouple parking search and cruising (defined as excess travel beyond search time) 
and derive the interplay with a driver’s willingness to walk. The authors showed that drivers 
facing parking scarcity are more willing to accept less optimal parking locations, trading it 
off with longer walking time.

Despite its importance in many modes of travel, walking has been rarely analyzed in the 
context of freight transportation and logistics, which is the focus of the current study. Previ-
ous research focused on demonstrating and analyzing walking delivery routes, known as 
on-foot porters or portering. Allen et al. (2021) documented a one-day pilot of using porters 
to perform deliveries in central London, UK. The researchers collaborated with a parcel 
delivery company and tested a two-echelon system in which a driver transported pre-loaded 
bags using a van and met with porters at pre-determined locations, where the porters per-
formed walking routes. The paper documented operational reductions in total parking dwell 
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times, vehicle use, and distance traveled but worsened the total labor required. McLeod et 
al. (2020) simulated different operational scenarios, including porters with wheeled bags, 
trolleys, and cargo bikes, documenting substantial environmental and financial savings 
potentials. Several papers contributed to practical optimization literature formally defin-
ing two-echelon routing problems and proposing automated solutions integrating walking 
and driving routes (Nguyen et al. 2019; Martinez-Sykora et al. 2020). Similar models were 
developed assuming, instead of porters, drones, or automated ground vehicles (Luo et al. 
1144; Simoni et al. 2019).

While these works analyzed walking as an alternative mode of transporting goods in 
urban areas, a handful of research papers recognized the importance of walking in deliv-
ery routes traditionally performed with motorized trucks and vans. Table 1 summarizes the 
reported walking distances and times obtained by reviewed studies, described below.

Allen et al. (2017) performed 25 ridealongs with a carrier delivering parcels in London, 
UK, and identified both driving and walking segments of the delivery process. They found 
that of the average total route time of 7.3 h, drivers spent 62 percent of their time parked, 
walking to perform the deliveries and pickups. They also measured the total walking dis-
tance, estimated at 7.94 km per route, representing 40 percent of the total distance covered 
by driving and walking.

Similarly, Dalla Chiara et al. (2021) also used ridealongs to observe delivery drivers’ 
behaviors. The authors performed six ridealongs with different carriers performing parcel, 
heavy goods, and medical deliveries in Seattle, WA. The authors found that drivers spent, on 
average, 80 percent of their time parked, walking to the final delivery destinations, except 
for one ridealong, which showed a reversed ratio of 20 percent walking and 80 percent driv-
ing, which only had overnight deliveries to rural communities.

Holguin-Veras et al. (2016) performed a delivery driver intercept and online surveys 
to inform a behavioral microsimulation of commercial vehicle parking in a study area in 
New York City. They collected 16 responses and documented an average walking time for 
delivery customers of 10 min, ranging from 0 min in Brooklyn to a maximum of 45 min in 
Queens.

Nourinejad et al. (2014) developed a simulation framework that included a parking 
choice model and a traffic simulation model for freight vehicles in urban areas and applied 
it to the Toronto Central Business District to evaluate potential closures to freight vehicle 
traffic of selected road segments. The authors included walking distance and time of deliv-

Study Location Walking 
distance

Walking 
time

Meth-
od

Allen et al. (2017) London, UK 107.6 
meters1

– Ride-
along

Holguin-Veras et al. 
(2016)

New York, 
US

– 10 min Sur-
vey

Nourinejad et al. 
(2014)

Toronto, CA 65.5 meters2 2.2 min2 Simu-
lation

Holguin-Veras et al. 
(2013)

New York, 
US

– 7 min3 Sur-
vey

Dezi et al. (2010) Bologna, IT 70 m – Sur-
vey

Aiura and Taniguchi 
(2005)

Kyoto, JP 25.5 meters4 – Sur-
vey

Table 1 Summary of delivery 
drivers’ walking distances and 
times reported in the literature

1Average per stop, one way
2Averaged across simulated 
scenarios
3A further reduction in walking 
time to 5.3 min was reported for 
off-peak deliveries
4Averaged across maximum 
distances drivers reported being 
willing to walk
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ery drivers as a key output metric of the framework and obtained average walking distances 
for delivery drivers per stop between 37 and 88 m across different scenarios.

Holguin-Veras et al. (2013), as part of a larger study to evaluate the impact of incentiv-
izing truck drivers and receivers to shift deliveries to off-peak in New York City, surveyed 
11 drivers and documented, among other variables, how their walking behavior changed by 
shifting deliveries overnight. They found that drivers walk from their parking location to a 
delivery destination on average 7 min during daytime and 5.4 min during nighttime. They 
also found that 40 and 60 percent of drivers park within one block of the receiver during 
daytime and nighttime, respectively.

Dezi et al. (2010) used circles of a 70-m radius to optimally allocate commercial vehicle 
loading zones in Bologna, Italy, after performing a survey among delivery drivers.

Allen et al. (2008) reviewed 30 empirical urban freight studies performed in the U.K. 
and reported their findings regarding several freight behaviors, including parking dwell time 
and walking. The authors analyzed the locations where the drivers met the receivers, but no 
quantitative analysis of the distance of these locations from the stop location was carried 
out. All studies found that most drivers walked to the retailer location, and only a few per-
formed the delivery at the stop location. Moreover, they identified walking distance and the 
number of deliveries performed per stop among key factors explaining parking dwell times.

Aiura and Taniguchi (2005) surveyed delivery drivers in Kyoto, Japan, and asked their 
maximum willingness to walk. They found a range between 10 m (29 percent of drivers) and 
50 m (17 percent of drivers), with 6 percent reporting not caring about how far the parking 
location was.

Given the importance and prevalence of walking in urban delivery routes, it is paramount 
to include it in the analysis of urban deliveries. While several studies have assumed that 
walking distance is a key variable affecting dwell times (Holguín-Veras et al. 2016, 2015), 
none of the empirical studies that analyzed urban commercial vehicle dwell time distribu-
tion looked at the impact of walking distance. Schmid et al. (2016) modeled commercial 
vehicle dwell times based on field observations collected in New York City. The empirical 
model estimate contained information only on the vehicle type, type of delivery, and park-
ing choice. Zou et al. (2016) analyzed stop dwell time and the number of stops per tour for 
commercial vehicles delivering in New York City. Their dwell time model used only vehicle 
type, type of delivery, and time of day. They also found that a vehicle performed an average 
of 14 stops per tour. Dalla Chiara and Cheah (2017) analyzed the dwell time of commercial 
vehicles delivering to urban retail malls in Singapore and found that the volume of goods 
transported, the vehicle loading, and the presence of pick-up activities increased dwell time. 
Kim et al. (2018) collected detailed data on the delivery operations inside an office building 
in Seattle by following the drivers as they performed the deliveries. They found that 26% of 
the drivers performed more than one delivery. However, drivers might have performed more 
deliveries outside the building, which were not observed. They also observed that delivery 
operations at the receiver took one to two minutes, and the remaining dwell time was spent 
performing other operations such as loading/unloading and walking to the receiver loca-
tions. No statistical modeling of the effect of walking distance and number of deliveries on 
stop dwell time was carried out.
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Contributions to the literature

To summarize, while walking has been increasingly recognized as a mode of transport in its 
own right and as a key component of many modes of transportation, a considerably smaller 
number of studies considered walking within urban freight transport. Urban last-mile deliv-
eries have mostly been associated with the action of driving trucks and delivery vans, with 
the consequence that most research works analyzed and modeled urban freight transport 
only focusing on its driving component, ignoring walking. Few research works documented 
walking within last-mile delivery operations, reporting walking distances ranging from 26 
to 108 m and walking times ranging between 2 and 10 min per delivery. The current study 
expands on the previous literature by developing a novel empirical methodology to docu-
ment and analyze walking in last-mile deliveries and further delve into understanding the 
relationship between walking and the performance of delivery routes in urban areas. This 
work fills the research gap by considering walking as a key component of last-mile urban 
deliveries and exploring the effect of walking on routing, parking, dwell time, and urban 
delivery routes' overall efficiency and sustainability.

Research methodology

Study area

The data used in this study was obtained from two logistics carriers delivering in the Seattle 
downtown core, which refers to the ten neighborhoods highlighted in Fig. 2.

Fig. 2 The study area, highlighted in the map, is formed by ten neighborhoods of Seattle, WA. From top-
left to bottom-right: Lower Queen Anne, South Lake Union, Broadway, Belltown, Pike-Market, Central 
Business District, First Hill, Pioneer Square, Yesler Terrace, and International District
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The study area measures 11.4 square km (4.4 square miles), and it comprises primarily 
mixed-used high-density developments, including offices, apartment buildings, commercial 
establishments, and tourist and sports venues such as the Space Needle, the Pike Place Mar-
ket, and the Lumen Field Stadium.

As reported by the carriers, the study area is generally characterized by a lack of off-
street loading/unloading bays, with the consequence that delivery vehicle drivers rely, for 
the most part, on the curb lane to park and load/unload the vehicles. Approximately 10 
percent of the curb allocated to vehicle parking in the study area is designated as Commer-
cial Vehicle Load Zones (CVLZs) and Passenger Load Zones (PLZs). These two types of 
curb space are the most frequently used authorized stopping locations for delivery vehicles 
(Dalla Chiara et al. 2021).

Data sources: stop and delivery data

The current study used stop data and delivery data collected from real-world deliveries 
from two carriers operating in the study area.

Stop data describes the delivery vehicles’ activities, recording the start and end time-
stamps of each vehicle parking stop and the corresponding latitude/longitude coordinates 
of the parking location. Stop data was obtained from the Global Positioning System (GPS) 
tracking devices deployed in the vehicles by the carriers. Stop times and geolocation were 
identified by the carriers using a multitude of sensors embedded in the vehicles, including 
engine, seatbelt, and door sensors.

Delivery data contains activities performed by the delivery drivers outside the vehicle, 
including loading/unloading, walking from the vehicle stop locations to the delivery desti-
nations, and completing deliveries to customers. Each delivery location's latitude/longitude 
coordinates and a timestamp of when the delivery occurred were recorded. Delivery data 
was obtained from drivers’ mobile delivery devices at the points of delivery, when the con-
signee needed to sign the proof of delivery, or when the driver took a picture of where the 
shipment was dropped.

In addition to the geolocations and timestamps of stops and deliveries, the dates and 
anonymized drivers’ identifiers were reported.

Data processing: merging stop and delivery data

For each delivery, the corresponding vehicle stop from which the delivered item was 
unloaded was identified (Fig. 3). A delivery was matched to a stop whenever both events (i) 
were associated with the same driver unique identifier, (ii) were performed during the same 
day, and (iii) the delivery timestamp was contained within the stop time window. In the 

Fig. 3 Matching of delivery 
events to respective parking 
stops

 

1 3



Transportation

example in Fig. 3  , the first delivery event was matched with Stop 1, the second and third 
were matched with Stop 2, and the fourth was matched with Stop 3.

The following variables of interest were computed after matching delivery and stop data.

 ● The walking distances were computed as the Euclidean distance between a delivery 
location and its associated vehicle stop location. No data was available on the actual 
walking tour performed by the driver to reach the delivery destination. Therefore, the 
Euclidean distance was used to proxy how far away a driver parked. Figure 4 shows an 
example of a stop matched with four deliveries and their respective walking distances. 
The walking distance can be seen as a lower bound to the actual walking distance, as the 
latter often includes navigating physical barriers such as finding a building’s entrance, 
taking elevators, etc.

 ● The number of deliveries per stop consists of the number of deliveries performed by 
a driver for each vehicle stop event; in other words, the number of delivery customers 
visited each time the driver parked the vehicle.

 ● Finally, delivery locations were matched with the building shapes GIS layer (City of 
Seattle 2020) to compute the number of buildings visited per stop. For instance, in 
Fig. 4, the four deliveries associated with a single stop occurred within three buildings. 
Hypothetically, it takes more effort to perform multiple deliveries across multiple build-
ings than to perform multiple deliveries within the same building.

Sample data description

Delivery and stop data samples were obtained from two logistics carriers: a parcel delivery 
company (thereafter named Carrier P) and a beverage carrier (thereafter named Carrier B).

Carrier P used delivery vans (approximately 26 ft—8 m long) to deliver and pick up par-
cels in downtown Seattle's residential buildings, offices, and retailers. Carrier B used larger 
box trucks (approximately 33 ft—10 m long) to deliver beverages and non-perishable food 
to retailers in downtown Seattle.

Fig. 4 Map showing four delivery locations (smaller red dots) that were served by a single stop location 
(larger black dot) and the respective walking distances (dashed lines)
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Table 2 reports the main summary statistics for each carrier's stop and delivery data. 
Carrier P recorded 284 stops and 972 deliveries, while carrier B recorded 668 stops and 
897 deliveries. For sample P, only one driver was observed for 24 days between October 3 
and November 9, right before peak e-commerce sales starting in mid-November. Sample B 
records data from 13 drivers over 125 days spread across 12 months, from March 2019 to 
March 2020. While carrier B data includes peak sales time, we do not expect carrier B to 
be affected by high demand fluctuations. Moreover, carrier B was mostly recorded before 
COVID-19 lockdown, which took place in Seattle at the end of February 2020.

Carrier P made a similar number of deliveries/pick-ups throughout the day, mostly start-
ing at 9 a.m., and only a few deliveries were made earlier than 9 a.m. Deliveries are evenly 
distributed throughout the week. Carrier B makes most deliveries early in the morning, and 
the number of deliveries decreases throughout the day. Most deliveries are made on Mon-
day, Tuesday, and Thursday.

Dwell time modeling

A regression analysis was performed to better understand the impact of the number of deliv-
eries per stop and walking distance on stop dwell times. The logarithm of dwell time was 
regressed over the variables of interest, and their marginal effect was estimated separately 
for carriers P and B, obtaining two sets of estimated regression coefficients.

Statistic Data sample
Parcel carrier (P) Beverage car-

rier (B)
No. stops 284 stops 668 stops
No. deliveries 972 deliveries 897 deliveries
Delivery density 40 deliveries/km2 3 deliveries/km2

Date range October 3 to November 
9, 2018

March 27, 2019 
to March 10, 
2020

No. days 24 days 125 days
No. tours 24 tours 152 tours
No. drivers 1 driver 13 drivers
Time of day
8 3.9% 18.4%
9 13.6% 17.3%
10 10.0% 17.7%
11 17.5% 12.5%
12 11.1% 13.5%
13 6.1% 10.6%
14 10.0% 7.4%
15 16.8% 2.2%
16 11.1% 0.4%
Day of week
Mon 20.0% 19.2%
Tue 19.3% 32.1%
Wed 26.8% 14.7%
Thu 17.1% 21.8%
Fri 16.8% 12.2%

Table 2 Summary statistics 
of variables obtained for two 
samples
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Different model specifications were tested using different functional forms to capture 
possible non-linearities and other temporal variables. The final model specification was 
selected such that the resulting adjusted R squared was smaller than simpler model specifi-
cations, the p-values of the relevant parameters showed significance for the key parameters, 
and the models were interpretable. The final dwell time model specification is as follows:

 
log (T ) = β0 + β1ndel + β2ndel2 + β3

ndel

nbuild
+ β4maxdist + β51[morning] + β6weight + ε

where:

 ● log (T ) is the natural logarithm of the stop dwell time T ( minutes);
 ● ndel is the number of deliveries per stop;
 ● nbuild is the number of buildings per stop;
 ● the fraction ndel/nbuild is referred to as delivery density and can be interpreted as the 

number of deliveries per building served;
 ● maxdist is the largest walking distance between a stop and the associated deliveries 

(km);
 ● 1[morning] is a dummy variable = 1 whenever the delivery was performed before noon;
 ● weight is the total weight of the goods delivered (kg), available only for company B;
 ● {βi}i=1,...,6 are the unknown regression parameters to be estimated;
 ● ε is a zero-mean normally distributed random error.

The dwell time model coefficients for carrier P were estimated using 284 observations 
from a single driver, while the parameters for the dwell time model for carrier B were esti-
mated using 668 observations recorded from 13 drivers.

For carrier P data, regression coefficients were estimated using Ordinary Least Squares 
(OLS). For carrier B data, a mixed-effect model with a random effect accounting for varia-
tion caused by different driver unique identifiers was used to capture possible dependen-
cies between stops performed by the same driver (Bates et al. 2015). For the latter model, 
the regression coefficients were estimated using Restricted Maximum Likelihood (REML) 
using the Lme4 package (Bates et al. 2015) coded in the R language (R Core Team 2017).

Tour simulation modeling

A tour simulation model was developed to understand the impact of delivery drivers’ walk-
ing behavior on the performance of delivery routes. Figure 5 provides a general overview of 
the model framework. The model consists of a set of inputs, outputs, and three sub-models: 
the stop formation, dwell time, and driving and cruising sub-models.

The model inputs consist of a set of real tours performed by parcel carrier P and bever-
age carrier B and a given maximum walking distance, measured in meters, representing 
the approximate maximum distance a driver is willing to walk from a parking location to a 
delivery destination. The stop formation model then aggregates the deliveries in each tour 
into stops—assuming that a driver might be willing to perform multiple deliveries from 
the same stop—and, for each stop, identifies the vehicle parking location. Once the stops 
are simulated, two additional models simulate the total time the driver takes to perform all 
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deliveries at a given stop and the total travel and cruising time between stops and between 
the depot and the first and last stop of a given route. The model outputs the total tour time, 
i.e., the total time it takes to perform all deliveries in a tour and the total distance driven. 
The total tour time is defined as the sum of the driving time, the cruising for parking time, 
and the stop dwell times. The following three subsections provide more details for each 
sub-model.

Inputs The simulation model has two main inputs: a set of real delivery tours and a 
maximum walking distance parameter. A total of 176 tours, comprising 1869 deliveries 
performed by carriers P and B in Seattle between October 2018 and March 2020 were used 
as input to the model. For each performed delivery, a time and date, a GPS location, and a 
unique anonymous driver identifier were recorded. To simulate different walking behaviors, 
a maximum walking distance, defined as the maximum Euclidean distance between a stop 
location and any delivery served, is given as an input parameter to the simulation. By vary-
ing the maximum walking distance, the number of stops in a given tour is also affected: the 
shorter the maximum walking distance, the fewer deliveries are performed per stop, and 
consequently, the larger the number of stops in a tour.

Stop formation sub-model In the stop formation sub-model, the deliveries performed by a 
driver in a given tour are assigned to stops. Each stop represents a parking event from which 
the deliveries assigned to that stop are performed. The deliveries are assigned to each stop 
so that all deliveries are not farther than the assumed maximum walking distance. Moreover, 
the model maintains the observed delivery sequence, i.e., the original order in which the 
drivers performed the recorded deliveries. The sequence in which a driver performs deliv-
eries depends not only on their geographical location (deliveries that are nearby are more 
likely to be served from the same stop) but also on other variables that were not recorded in 
the data, such as delivery time windows and delivery priority level, among others. There-
fore, while the deliveries to stop aggregation is re-computed, the original time sequence of 
deliveries in a tour is not changed from the one observed in reality.

The stop formation sub-model consists of three steps: (1) clustering, (2) feasible stop 
search, and (3) stop location. In the clustering step, deliveries are grouped into disjoint 
clusters, each representing a potential stop. A hierarchical clustering algorithm is applied to 
each tour to generate a hierarchy of nested clustering solutions. At the highest level of the 
hierarchy, all deliveries are clustered into a single stop; at the lowest level of the hierarchy, 
each delivery is a stop on its own; at any intermediate level, two clusters generated at a 
lower level are merged into a single cluster. The clustering algorithm requires a distance 

Fig. 5 Simulation model framework: dotted boxes represent inputs/outputs, solid-line boxes represent 
sub-models
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matrix T  with elements tij  measuring the dissimilarity between any two elements i and j. 
In this model, each tij  is defined as the time distance between any two deliveries i and j. In 
such a way, deliveries that were performed consecutively are clustered together, maintain-
ing the observed delivery sequence.

Once the hierarchy of clustering solutions is found, a feasible stop search is performed. 
For each candidate stop in the hierarchy, the maximum geographical distance between any 
two deliveries belonging to the same stop is computed. If this distance is less than or equal 
to twice the given maximum walking distance (we assumed that the vehicle stops in the 
middle of the cluster), then the stop is feasible. The feasible stop search starts from the top 
of the hierarchy (all deliveries are assigned to the same stop) and iteratively searches for 
feasible stops going down to lower levels. The feasible stop search ends once all deliveries 
are assigned to stops. The output of this algorithm consists of finding the largest clusters of 
deliveries that were performed consecutively in time so that any two deliveries belonging to 
the same stop are not farther apart than the assumed maximum walking distance. Figure 6 
shows the result of the stop formation algorithm for an artificial set of delivery locations and 
varying levels of maximum walking distance. Note that the number of stops decreases as the 
maximum walking distance increases.

Once all stops are determined, the vehicle stop location is found by averaging the lati-
tude/longitude coordinates of all deliveries belonging to the same stop, assuming that the 
vehicle stops at the cluster's center. The final output of the stop formation model consists of 
a set of stops for each observed tour, each stop characterized by a given number of deliver-
ies, their geographical distribution, and a vehicle stop location from which deliveries are 
performed.

Dwell time sub-model The set of stops generated from the previous sub-model is then 
used as input to a dwell time sub-model, which predicts the total dwell time of each stop 
using the dwell time regression formulas developed in the previous section. Carriers P and 
B data were used to estimate two different dwell time models (see estimated parameters 
in Table S4). The model takes as input the number of deliveries at a stop, the maximum 
distance between the vehicle stop location and the delivery destinations served, and the 
number of buildings that contain all the deliveries assigned to that stop. Each variable is 
then multiplied by the respective value of the estimated regression coefficient. Moreover, a 
random number picked from a normal distribution with mean zero and standard deviation 

Fig. 6 Results of the stop formation sub-model for an artificial tour of 20 deliveries for varying levels of 
maximum walking distance
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equal to the observed standard deviation of the estimated regression residuals is added to 
the predicted stop dwell time.

Driving and cruising sub-model. The driving model takes as input each tour’s vehicle 
stop location and time sequence in which the stops are performed and outputs the driving 
distance and time between each pair of consecutive stops and between the first/last stop and 
the depot. The shortest path between each pair of destinations is computed using the Open 
Source Routing Machine (OSRM) package in R (Giraud 2020). To each trip time between 
stops, cruising for parking time was added by randomly picking from a normal distribu-
tion with mean and standard deviation equal to the empirical mean and standard deviation 
of the empirical distribution of cruising for parking times observed for carriers P and B. 
Figure 7 shows the empirical distributions of estimated cruising for parking times obtained 
from the two carriers’ data. These estimates were obtained by benchmarking each trip time 
performed by the carriers with the forecasted time using the Google Maps Distance Matrix 
API (Platform and “Distance Matrix API”, Developer Guide 2021). ld (2020), and Dalla 
Chiara et al. (2022) for more details on the methodology used to estimate cruising for park-
ing times.

Outputs The above steps are performed for each observed tour and each given value of 
maximum walking distance. Moreover, for each stop, the respective dwell time and trip 
time are predicted 100 times; each time, a different random error and cruising time are 
picked at random from the respective probability distributions. Two sets of output metrics 
are obtained for each given value of maximum walking distance: stop- and tour-level met-
rics. Stop-level output metrics include the following.

 ● Stop dwell time Vehicle stop dwell time is averaged over all
 ● Trip travel and cruising time Sum of travel time between any two stops and cruising for 

parking time, averaged over all tours (minutes).

Tour-level output metrics include the following.

 ● Number of stops per tour Mean number of stops per tour, averaged over all tours.
 ● Tour travel distance Mean total travel distance per tour, averaged over all tours (km).
 ● Tour travel and cruising time Total time spent traveling between stops and between the 

Fig. 7 Empirical distributions of estimated cruising for parking times for carriers P and B
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depot and the first/last stop and spent cruising for parking in a tour, averaged over all 
tours (hours).

 ● Tour dwell time Sum of all dwell times in a tour, averaged over all tours (hours).
 ● Tour total time Sum of tour dwell time and tour travel and cruising time, averaged over 

all tours (hours).

Descriptive results

Four main variables of interest are obtained after processing and merging delivery and stop 
data:

 ● Deliveries per stop The number of delivery locations served from a given stop; each 
delivery is characterized by a unique pair of latitude/longitude coordinates.

 ● Buildings per stop Number of buildings that contain all deliveries performed from a 
stop.

 ● Walking distance Euclidean distance between a delivery and its respective stop location.
 ● Dwell time Total time a vehicle is parked while the driver performs the delivery requests.

Table 3 reports the main summary statistics of these variables. The following subsections 
discuss each variable’s observed empirical distribution, and results from the two data sam-
ples are compared.

Number of deliveries and buildings served per stop

Figure 8 shows the percentage of stops by number of deliveries for each carrier. For 
both carriers, most stops are characterized by only one or a few deliveries, and this share 
decreases as the number of deliveries per stop increases. However, while 81 percent of stops 
performed by carrier B are characterized by one delivery, only 33 percent of stops of carrier 
P served one delivery location. Table 2 shows that carrier P’s median number of deliveries 
performed per stop is two, while carrier B performed a median number of one delivery per 
stop. The mean number of deliveries per stop is 3.4 and 1.3 deliveries per stop for P and B, 
respectively.

The number of buildings per stop shows similar distributions to Fig. 8; hence, they are 
not reported here. The median numbers of buildings visited per stop are 2 and 1 for carriers 
P and B, and the means are 2.7 and 1.3. Of course, the number of buildings served per stop is 
lower or equal to the number of deliveries per stop, as two or more deliveries can be located 
within the same building.

Several factors can explain the different behaviors. The parcel carrier generally per-
formed more frequent deliveries (higher delivery density) of smaller and lighted items than 
the beverage delivery carrier. Moreover, the parcel carrier P delivered mostly in the Bell-
town district of Seattle, one of the city's busiest neighborhoods, and therefore, drivers might 
have experienced a high cost of re-parking the vehicle. The beverage carrier’s drivers also 
operated in other neighborhoods where the cost of re-parking the vehicle might have been 
smaller.
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Walking distance

Figure 9 shows the empirical distributions of the observed walking distances for each car-
rier, defined as the Euclidean distance between the parking stop location and the customer 
delivery location, for each delivery performed. The median walking distance for carrier P is 
38.4 m (126 feet), while for carrier B is 104.5 m (343 feet), almost three times longer. The 
larger median walking distance can be explained by the fact that the vehicles used by carrier 
B are larger than those used by carrier P, and they might not be able to find a large enough 
parking location close to the delivery location and, therefore, are forced to park farther 

Fig. 8 Empirical distributions of 
the number of deliveries per stop 
for beverage carrier B and parcel 
carrier P

 

Statistic Data sample
Parcel carrier (P) Beverage carrier (B)

No. deliveries per stop
Min 1.0 1.0
Median 2.0 1.0
Mean 3.4 1.3
Max 16.0 11.0
No. buildings per stop
Min 1.0 1.0
Median 2.0 1.0
Mean 2.7 1.3
Max 12.0 9.0
Walking distance (meters)
Min 3.1 2.4
Median 38.4 104.5
Mean 53.3 148.8
Max 417.7 499.5
Dwell time (minutes)
Min 0.9 3.8
Median 17.5 33.4
Mean 26.2 43.0
Max 148.9 290.0

Table 3 Summary statistics of 
main variables of interest
 

1 3



Transportation

away. The beverage carrier B also shows a wider variation in walking distance, which might 
have been caused by the larger number of drivers observed and data obtained.

Parking dwell time

Figure 10 shows the empirical distributions of parking dwell times for carriers P and B. 
On average, carrier B’s dwell times are longer than carrier P’s, with median dwell times of 
33.4 min and 17.5 min, respectively. The variation in dwell times is also larger for carrier B.

Longer carrier B dwell times might be caused by several factors, including (i) the larger 
volumes and weight of deliveries, (ii) the fact that carrier B mostly delivers to retailers, while 
carrier P mostly delivers to households and offices, and (iii) the longer walking distances.

Modeling results

Effect of walking on dwell time

Table 4 reports the estimated regression coefficients for the two dwell time models esti-
mated using data from companies P and B, for which we provide an interpretation in the 
following paragraphs.

As expected, the estimated value for β1 is positive for both carriers, indicating that the 
larger the number of deliveries performed in a stop (ndel), the longer the dwell time. The 
negative sign of the estimated β2 indicates a decreasing marginal effect of the number of 
deliveries per stop on dwell time.

The number of deliveries per stop interacts with the number of buildings where the deliv-
eries are located. The sign of the estimated regression coefficient β3 multiplying the deliv-
ery density is negative for both carriers: for a given number of delivery customers, the more 
deliveries are within the same building(s), instead of being spread across different buildings, 
the shorter the parking dwell time. Whereas, spreading deliveries across different buildings 
will have the opposite effect of increasing dwell time, for a given number of deliveries.

Fig. 9 Boxplots showing the empirical distributions of walking distance for carriers B and P
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The effect of maximum walking distance (maxdist) on dwell time is positive for both 
carriers, although not statistically significant for carrier B. For carrier P, an additional 100 m 
(328 ft) of maximum walking distance increases dwell time by 13 percent. For carrier B, an 
additional 100 m will increase dwell time by 1 percent. Considering the average dwell time 
for each carrier, an increase of 100 m for the maximum walking distance would increase 
the average dwell time by 2.3 min for carrier P and by a third of a minute for carrier B. The 
smaller percentage change for carrier B can be explained by the fact that the time spent 
walking to reach a delivery location occupied a smaller share of the total dwell time, while 

Variable Parcel carrier (P) Beverage carrier (B)
Estimate(A) S.E Estimate(A) S.E

β0 Intercept 2.044 (***) 0.167 2.497 (***) 0.127
β1 No. 

deliveries
0.396 (***) 0.047 0.661 (***) 0.059

β2 (No. 
deliveries)2

− 0.013 (***) 0.003 − 0.043 
(***)

0.007

β3 Delivery 
density

− 0.309 (**) 0.130 − 0.069 0.113

β4 Max. walk-
ing distance 
(km)

1.311 (*) 0.768 0.104 0.183

β5 Morning 
time

− 0.119 0.087 0.344 (***) 0.046

β6 Weight (kg) – – 6.767 × 10–6 
(∙)

4.549 × 10–6

Random effects
σdriver – 0.138
Summary statistics
Sample size 284 708
Adjusted R2 0.510 0.308
 Log likelihood − 307.907 − 482.598

Table 4 Regression estimation 
results

(A): p value < 0.15; *p 
value < 0.1; **p value < 0.05; 
***p value < 0.01

 

Fig. 10 Boxplots of the empirical distributions of parking dwell times for carriers B and P
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a larger share of time spent in other activities, such as loading/unloading at the delivery 
destination.

The effect of the temporal binary variable morning shows different modality of per-
forming deliveries across the two companies. For parcel carrier P, higher priority express 
deliveries have to be delivered by noon, and therefore we expect the driver to be more in 
rush compared with afternoon deliveries. For beverage carrier B instead, most of the deliv-
eries are done early in the morning to avoid peak hour road traffic and parking congestion; 
hence, company B drivers seem to prioritize longer deliveries in the morning, leaving a few 
shorter deliveries in the afternoon.

Finally, the total weight (in kg) of the deliveries performed per stop was available only 
for carrier B, showing a positive effect of an increase in weight on total parking dwell time.

To better understand how parking dwell time is affected by walking distance and related 
variables, the estimated models are used to forecast dwell time across different scenarios 
with varying maximum walking distance, number of deliveries, and number of buildings 
served per stop. The results of this forecasting exercise are shown in Fig. 11 (carrier P fore-
cast) and Fig. 12 (carrier B forecast). The figure shows the percentage change in dwell time 
across changes in the three input variables, with respect to a reference scenario of a carrier 
P and carrier B driver performing a single delivery in a single building with a maximum 
distance equal to one block in Seattle (assumed 122 m or 400 ft). We observe that the effect 
of walking distance is much stronger in carrier P: when the driver has to walk one additional 
block to deliver, the parking dwell time increases by 46 percent. On the contrary, a carrier 
B driver’s dwell time increases only 5 percent. If, instead, we increase the number of deliv-
eries from 1 to 2, keeping the delivery density unchanged (both deliveries are within the 
same building), carrier P’s dwell time increases only by 10 percent, while carrier B’s dwell 
time increases by a staggering 59 percent. Because carrier B’s deliveries are much heavier 
than carrier P’s, it is reasonable that adding one more customer served by the same stop 
increases dwell time more for carrier B than P. In general, carrier P seems more efficient in 
taking advantage of its delivery density to serve more customers within the same building 
without impacting too much dwell time, while carrier B does not have an efficient economy 
of scale in increasing delivery density. However, when the second delivery is in a different 
building, dwell time increases by 46 and 71 percent for carriers P and B, respectively. Add-
ing one delivery to a different building is costly (in terms of total parking dwell time) for 
both carriers.

Effect of walking on tour performance

A simulation model was developed to better understand the role of walking on a delivery 
tour performance—defined as the amount of time it takes to travel and perform all deliver-
ies assigned to a given route. The simulation took as inputs the real delivery schedules of 
drivers from carriers P and B and a set of simulated maximum walking distances. The latter 
is defined as the maximum Euclidean distance between the vehicle parking location and 
delivery customers’ locations a driver is willing to cover. The simulation model was run for 
all tours, and all simulated maximum walking distances ranged from 10 to 200 m.

Figures 13, 14 and 15 and Table 5 show the simulation output metrics for varying maxi-
mum walking distances. Each metric's mean value is reported across all simulated tours, 
separately for carriers P and B.

1 3



Transportation

Fig. 12 Beverage carrier (B) dwell time prediction for varying numbers of buildings visited, deliveries, 
and maximum walking distance. Percentage changes are reported with respect to the reference scenario 
(one delivery in one building)

 

Fig. 11 Parcel carrier (P) dwell time prediction for varying numbers of buildings visited, deliveries, and 
maximum walking distance. Percentage changes are reported with respect to the reference scenario (one 
delivery in one building)
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Figure 12-left reports the mean stop dwell time for varying maximum walking distances, 
showing the average dwell time across all stops and tours. The more a driver is willing to 
walk (larger maximum walking distances), the more deliveries they perform from a single 
vehicle stop location, and consequently, the longer the individual stop dwell time. While 
there is an increasing trend for both carriers, carrier P's increase in dwell time with an 
increase in maximum walking distance is higher in magnitude than carrier B’s: from 10 
to 100 m change in maximum walking distance, the mean dwell time for carrier P more 
than double, while carrier B’s increases less than 5 percent. This is because carrier B’s 
delivery density is much more sparse than carrier P’s, and therefore, increasing the driver’s 
willingness to walk does not result in more deliveries being served from the same stop that 
frequently, except for certain segments of carrier B’s tours that show a higher concentration 
of deliveries in a smaller area. We also note that at 10 m of walking distance, where most 
deliveries are served from an individual stop location, carrier B’s mean dwell time is higher 
than carrier P’s since individual parcel deliveries are usually performed faster than beverage 
deliveries. Even if the walking distance is reduced to the smallest possible value (10 m), 
the stop dwell time is still approximately 10 and 15 min for carriers P and B, respectively.

A similar trend is shown in Fig. 13-right, where the mean trip travel time increases with 
maximum walking distance, although at a much lower rate than with stop dwell times. 
The more deliveries are aggregated within fewer stops, the fewer stops per tour a driver 
performs, as shown in Fig. 14-left, and therefore the longer the trips between stops. We 
note again that the mean trip travel time is generally higher for carrier B than P because its 
delivery customers are located farther apart from each other.

Figure 14-right shows the total tour travel distance, measured in km. The larger the 
driver’s willingness to walk, the longer delivery trips between stops are on average, but the 
fewer trips are performed, since the fewer times a driver stops per tour. The overall effect 
is a decrease in the total distance traveled. For carrier P, increasing the willingness to walk 
from 10 to 200 m (which reduced the mean number of stops per tour from 36 to 4) reduced 
total tour travel distance by 25 percent (5 km) per delivery tour. For carrier B the same 

Fig. 13 Changes in simulation outputs over maximum walking distances, averaged across all tours by car-
rier. (left) Mean stop dwell times; (right) mean trip travel time, including cruising for parking
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increase in willingness to walk (which reduced the mean number of stops per tour from 17 
to 15) reduced total tour travel distance by 4 percent (2 km) per delivery tour.

Combining the output metrics described above, the total tour travel time, total tour dwell 
time, and the total tour time (defined as the sum of tour travel and dwell times) are obtained. 
All three metrics are reported in Fig. 15.

Fig. 15 Total tour travel time, dwell time, and total tour time for parcel delivery carrier P (left), and for 
beverage carrier B (right), over maximum walking distances

 

Fig. 14 Changes in simulation outputs over maximum walking distances, averaged across all tours by 
carrier. (left) Mean number of stops in a tour; (right) mean total tour travel distance
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The total tour travel time shows a similar trend to the total tour travel distance. While 
the average trip time increases with a driver’s willingness to walk, fewer trips are needed 
in a tour, and the total amount of time spent driving decreases. The total tour time includes 
cruising for parking times, and the fewer stops performed also implies a decrease in total 
cruising for parking time.

The total tour dwell time shows a more complex behavior. For carrier P, an increase in 
walking results in an initial sharp decrease in total dwell time as fewer stops are performed. 
However, at around 50 m (164 feet, approximately the average length of a blockface in 
Seattle downtown) of maximum walking distance, the total tour dwell time starts increasing 
again as the mean stop dwell time starts increasing almost exponentially, as more delivery 
customers are being served from each stop. Carrier B shows an opposite trend: an increase 
in willingness to walk increases total dwell time. In this case, the reduction in the total 
number of stops is not enough to offset the increase in mean dwell time for each stop. This 
is mainly because carrier B’s delivery stops are generally longer and located farther apart; 
therefore, aggregating multiple deliveries within a single stop worsens total tour dwell time.

The total tour time is computed as the sum of tour travel and dwell times. For carrier P, 
an increase in willingness to walk has an initial positive effect of reducing the total amount 
of time it takes to perform a delivery tour up to 50 m, after which the rate of change in total 
tour time is close to zero. We note a decrease in total tour time beyond 160 m. However, this 
might be due to the reduced performance of the dwell time simulation algorithm in predict-
ing dwell times at higher walking distances than those observed. For carrier B, an increase 
in willingness to walk has an overall small effect on total tour time, with approximately a 1 

Output metric Max. walk-
ing distance 
(meters)

Carrier
P B

Stop dwell 
time (min)

10* 10.2 15.9
100 27.3 (+ 168.6%) 16.6 (+ 4.6%)
200 74.7 (+ 635.9%) 18.0 (+ 12.9%)

Trip time 
(min)

10 6.5 15.2
100 9.5 (+ 47.0%) 15.5 (+ 1.6%)
200 15.6 (+ 140.7%) 15.7 (+ 3.0%)

Number of 
stops per tour

10 35.7 17.1
100 11.5 (− 67.7%) 16.2 (− 4.8%)
200 4.2 (− 88.2%) 15.4 (− 10.0%)

Total tour 
travel distance 
(km)

10 20.1 31.9
100 17.3 (− 14.0%) 31.6 (− 1.1%)
200 15.2 (− 24.7%) 30.8 (− 3.6%)

Total tour 
dwell time 
(hour)

10 7.1 4.8
100 5.6 (− 21.1%) 4.9 (+ 2.7%)
200 5.2 (− 27.4%) 5.1 (+ 6.7%)

Total tour 
travel time 
(hour)

10 3.9 3.7
100 1.8 (− 52.7%) 3.6 (− 2.4%)
200 1.1 (− 72.4%) 3.5 (− 6.2%)

Total tour 
time (hour)

10 11.0 8.5
100 7.4 (− 32.4%) 8.5 (+ 0.5%)
200 6.3 (− 43.2%) 8.6 (+ 1.1%)

Table 5 Changes in key simula-
tion output metrics over varying 
maximum walking distances 
allowed, for parcel carrier P and 
beverage carrier B

*Maximum walking distance of 
10 m is used as reference points 
to compute the percentage 
changes for each output metric 
and carrier
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percent increase. In this case, the increase in tour dwell time is offset by the decrease in tour 
travel time, resulting in only a small increase in total time. In particular, we note that, while 
for carrier P, the tour travel time represents only a small fraction of the total tour time, for 
carrier B, travel represents an almost equal share of total tour time.

Conclusion and discussion

Key results

Several authors have shown that most urban delivery drivers’ time is spent not in the vehicle 
driving but outside the vehicle, walking to perform the last-50-feet of urban deliveries. 
While it is logical to focus on analyzing and optimizing this portion of a delivery route, 
most technologies and research efforts focus on the driving component of urban delivery 
routes, while little is known about the walking component. This study took the first step in 
identifying a novel empirical method to analyze the role of walking in last-mile deliveries 
and understanding how delivery drivers’ walking behavior affects the efficiency and sustain-
ability of urban delivery routes.

The paper uses two datasets of more than 1,800 real deliveries performed in Seattle, WA, 
by a parcel carrier (P) and a beverage carrier (B) as a case study. GPS data from the vehi-
cles and drivers’ movements were obtained and matched to identify vehicle stop locations, 
customer delivery destinations, and related walking behaviors between stops and delivery 
locations, including willingness to walk, number of delivery customers drivers walked to 
from each vehicle parking stop, number of buildings visited from each stop, and resulting 
stop dwell time. First, descriptive results were obtained, describing the summary statistics 
of the empirical distributions of the key variables obtained: walking distance, number of 
delivery customers served per stop, number of buildings visited per stop, and stop dwell 
time. Then, two behavioral models were estimated: a regression analysis of the impact of 
walking on stop dwell time and a simulation analysis to understand the impact of walking 
on total route performance and vehicle miles traveled. Table 6 summarizes the key empirical 
results obtained.

Results 1 to 3 report the main summary statistics from the two data samples. It shows that 
the two carriers have fundamentally different walking behaviors. Parcel carrier’s drivers, 
given the much higher density of deliveries per square mile faced and the use of more agile 
smaller delivery vans, park their vehicles closer to the delivery customers (hence walking 
shorter distances between the parking location and the delivery destinations), while serving 
multiple customers from a single stop. The beverage carrier drivers instead walk longer dis-
tances while serving mostly one customer per vehicle stop, with fewer than 20 percent of the 
stops serving more than one customer. We note that the walking distance reported in Table 6 
is defined as the maximum Euclidean distance between the vehicle parking locations and 
the customer delivery locations served from that stop. Therefore, it shows how far the driv-
ers parked from the delivery destinations, and not the actual length of the path walked by a 
driver (the latter variable would be an interesting extension of the current work, to analyze 
in a more detailed way actual walking paths). While a parcel delivery driver parked closer 
to their customers, they might have walked longer distances, given the larger number of 
customers served from each stop. In general, given the higher number of customers served 
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per stop for carrier P and the longer distances from the parking location for carrier B, both 
data samples show that delivery drivers walked a significant amount to perform the deliver-
ies, and that walking is an important—if not the most important—activity in their daily job.

Results 4 and 5 delve deeper into the impact of delivery drivers’ walking behavior on 
stop dwell times, defined as the amount of time vehicles are parked. Formulating and esti-
mating a regression model for each carrier, it was found that the parcel carrier showed 
strong economies of scale in serving multiple customers from a single delivery stop, while 
parking far away from delivery customers increased dwell time by a significant 17 percent. 
On the other hand, carrier B showed the opposite effects: longer walking distances increased 
dwell time by only 1 percent, while serving multiple customers from a single stop resulted 
in a significant increase in dwell times.

Result 
metric

Carrier
Parcel 
carrier 
(P)

Bev-
erage 
carrier 
(B)

(1) Walking 
distance

Carrier P parked on 
average 53.3 m (175 ft.) 
away from their delivery 
destination

Carrier B parked 148.5 m 
(487 ft.) away from their 
delivery destination

(2) Deliver-
ies per stop

In 67 percent of carrier 
P’s stops drivers walked 
to 2 + customers

In 19 percent of carrier P’s 
stops drivers walked to 
2 + customers, most stops 
served only 1 customer

(3) Stop 
dwell time

Carrier P’s drivers 
stops were on average 
26.2 min long

Carrier B’s drivers stops 
were on average 43 min 
long

(4) Impact 
of no. 
deliveries 
per stop on 
dwell time

Strong economies of 
scale in serving multiple 
customers from the 
same stop

Weak economies of scale in 
serving multiple customers 
from the same stop (pos-
sibly due to larger average 
delivery size)

(5) Impact 
of walking 
on dwell 
time

Walking an additional 
100 m increases dwell 
time by 17 percent

Walking an additional 
100 m increases dwell time 
by 1 percent

(6) Impact 
of walking 
on total 
route dwell 
time

Increase in walking 
reduces total route dwell 
time (longer but fewer 
stops)

Increase in walking 
increases total route dwell 
time by a small amount 
(the reduction in number of 
stops does not offset longer 
dwell times)

(7) Impact 
of walking 
on total 
route drive 
and cruising 
time

Increase in walking 
from 10 to 200 m (656 
ft.) reduces vehicle miles 
traveled by 25 percent 
and driving time by 72 
percent

Increase in walking from 
10 to 200 m (656 ft.) 
reduces vehicle miles 
traveled by 4 percent and 
driving time by 6.2 percent

(8) Impact 
of walking 
on total 
route time

Reduces total time driv-
ers take in performing 
delivery routes

Small increase in total time 
drivers take in performing 
delivery routes

Table 6 Summary of results 
obtained from the observed data 
samples
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Results 6–8 report the impact of walking on the routes performed by the carriers. The 
observed routes were divided into three components: driving, cruising for parking, and 
walking. Similar effects of walking were observed on the two carriers but with different 
magnitudes. An increased willingness to walk implies that drivers serve more delivery cus-
tomers per stop, and therefore, the total number of stops decreases while the dwell time for 
each stop increases. The total effect of walking on the total time spent parking is then deter-
mined as to whether the reduction in the number of stops is large enough to counterbalance 
the increase in dwell time per stop. In the case of the parcel carrier, longer walking distances 
reduce the total route dwell time and the total time to perform the whole route. However, 
in the beverage carrier, longer walking distances increase dwell times without significantly 
reducing the total number of stops per route, with the consequence that increasing walking 
does not improve the route performance. However, the simulation also showed another 
important effect of walking: an overall reduction in total vehicle miles traveled and, conse-
quently, a reduction in vehicle emissions.

Implications for policy and practice

The results above highlight the importance of walking in delivery route performance and 
sustainability in urban areas. Consequently, this paper emphasizes the need to consider 
walking in infrastructure planning, urban freight policy design, and the routing and schedul-
ing of delivery vehicles.

From a public sector perspective, the key question is how to design and manage freight 
infrastructure and policies that best support delivery carriers’ performance while minimiz-
ing negative externalities. Rephrasing this objective using key route performance metrics 
discussed in this study: how can we preserve carriers' ability to perform delivery routes in 
the shortest time possible while reducing vehicle miles traveled and its byproducts, includ-
ing emissions, pollution, congestion, and safety externalities? One approach several cities 
in North America have taken is to allocate curb space to commercial vehicle parking, often 
referred to as Commercial Vehicle Load Zones (CVLZs). Assuming a certain level of park-
ing enforcement, by dedicating curb space to delivery vehicles, their cruising for parking 
time is reduced, as well as the likelihood for these vehicles to double park or to park too far 
away from their delivery destinations, hence guaranteeing carriers and businesses a certain 
level of delivery efficiency, especially in urban congested areas. The current study has also 
shown that encouraging delivery drivers to stop frequently (e.g., providing several CVLZs 
every blockface) might not represent the best strategy, as a decreased cost of re-parking 
the vehicles and hence a reduced willingness to walk increases total vehicle miles traveled. 
This reasoning is, in a way, obvious, as providing more parking encourages vehicles to park 
more often, reducing the average stop dwell times and increasing the number of stops in a 
tour. Instead, this study has shown that some walking is desirable, both from the perspective 
of efficiency and sustainability. Using empirical data from Seattle, it was demonstrated that 
encouraging a delivery driver to walk up to approximately one blockface length of Seattle 
downtown, decreased the total time a driver takes to perform a tour as well as reduced vehi-
cle miles traveled. However, further increasing the total walking time, without a systemic 
change in how deliveries are conducted, would risk deteriorating delivery performance; 
hence, the time it takes drivers to perform delivery tours to a level in which the drivers 
will be forced to double park or the carriers to increase the number of vehicles serving a 
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given area. In designing a CVLZ program, cities should consider that many delivery driv-
ers are willing to walk for a block or two and aggregate multiple deliveries within a single 
vehicle stop. Allowing drivers longer dwell times at CVLZs, providing them with suitable 
infrastructure for walking, including curb ramps and wide sidewalks, and enforcing CVLZs 
such that drivers are more likely to find them available when needed are equally important 
efforts to expanding the network of CVLZs. Empirical results from the current study have 
also shown that the cost of walking (measured as impact to total stop dwell time) differs 
between the observed carriers. Longer walking distances have a more significant impact on 
the parcel carrier, than the beverage carrier, percentagewise. Consequently, their infrastruc-
ture needs differ, with smaller but more geographically prominent CVLZs supporting the 
parcel carrier’s operations, while fewer, but better enforced and larger CVLZs supporting 
the beverage carrier’s operations.

From a carrier perspective, ignoring walking in scheduling and routing delivery vehicles 
implies ignoring the largest share of a delivery driver’s time. While drivers naturally try to 
minimize the amount of walking to perform last-mile deliveries, given the complexity of 
the urban environment, the high rates of paring occupancies and road traffic, and the higher 
delivery identities many carriers are currently facing, it implies that walking is a natural 
and needed activity. Drivers do not always find parking right in front of delivery customer 
addresses, and drivers are neither able nor willing to double park due to often potential 
safety concerns. Therefore, walking is an important component of any delivery route. More 
data, methods, and tools should be invested in supporting delivery drivers in understanding 
the optimal amount of walking needed to perform their delivery routes efficiently while 
minimizing negative externalities.
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