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This research paper estimates carbon dioxide (CO2) emissions and vehicle-miles traveled
(VMT) levels of two delivery models, one by trucks and the other by unmanned aerial vehi-
cles (UAVs), or ‘‘drones.” Using several ArcGIS tools and emission standards within a frame-
work of logistical and operational assumptions, it has been found that emission results vary
greatly and are highly dependent on the energy requirements of the drone, as well as the
distance it must travel and the number of recipients it serves. Still, general conditions are
identified under which drones are likely to provide a CO2 benefit – when service zones are
close to the depot, have small numbers of stops, or both. Additionally, measures of VMT for
both modes were found to be relatively consistent with existing literature that compares
traditional passenger travel with truck delivery.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

In March 2012, Silicon Valley startup TacoCopter made headlines as it publicly announced plans for the delivery service of
tacos within the City of San Francisco via unmanned aerial vehicles (UAVs), otherwise known as ‘‘drones” (Gilbert, 2012)
Interested customers would be able to place their order on a smartphone application and comfortably wait as a drone deliv-
ers their food to them from above. However, the idea never was able to get off the ground as shortly after the announcement,
the U.S. Federal Aviation Administration (FAA) quickly enacted and has since enforced a national moratorium on all commer-
cial activities utilizing drone technology. Nevertheless, interest in the nonmilitary use of drones has increased dramatically
with successful operations outside the United States in the delivery of medicine, food, and mail orders. In light of these
successes, as well as pressure from the private sector seeking to exploit the potential benefits of drone technology, the
FAA has recently created legal and physical space for experimentation, although full commercial operation authorization
is not expected for some time (United States Federal Aviation Administration, 2015).

As with past penetration of technology in markets and industries, focus has been heavily placed on the economic and
social impacts that the introduction of drone technology may bring. For instance, companies anticipate a reduction in trans-
portation costs (D’Andrea, 2014), concerns exist regarding individual privacy rights (Olivito, 2013), and airspace congestion.
As these benefits and costs are weighed, however, little assessment currently exists on the environmental consequences that
drone technology may possibly have if fully adopted by industries.
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This research paper seeks to answer this question, specifically in terms of CO2, which is the most documented and well-
known greenhouse gas, and vehicle miles traveled (VMT), a measurement of movement often used to calculate pollution and
energy impacts. This paper will first discuss existing literature and then describe the methodology used to model delivery
routes while incorporating real-world emission parameters. The resulting estimates on the effects that the replacement of
delivery trucks by delivery drones will have on operational CO2 emissions and VMT, as well as identified patterns by these
results, are presented at the end of this paper.
2. Literature review

To understand past efforts in research with regards to the impacts of delivery modes and comparisons amongst them, a
literature review was conducted. Ample articles were identified in regards to delivery trucks, each with generally similar
results showing significant reductions in CO2 emissions and/or VMT when delivery trucks replace personal travel. However,
when focus was shifted onto the environmental impacts of delivery drones, little could be found. While drones are not as
well-studied as trucks, comparisons between delivery trucks and personal light-duty travel models are relevant and telling
in how methodology and results could assist or be applied towards this research.

2.1. Evaluations of impacts of delivery trucks

Some of the earliest work comparing delivery services to personal travel was conducted by Cairns, with several papers
spanning from the late 1990s to the mid-2000s. Focusing on VMT impacts of grocery delivery services in the United King-
dom, she finds significant reductions when a delivery-by-truck system replaced typical passenger travel, often estimating
savings of 70–80% (Cairns, 1997). She also finds it possible to have increased VMT savings as the number of customers simul-
taneously increases (Cairns, 1998). While these results were pertinent only to the United Kingdom, she later expands her
research, examining international results of modeling assessments, and again sees a 70% or more potential savings in
VMT (Cairns, 2005). Unfortunately, Cairns work has been limited to estimated changes in VMT only and does not examine
emission impacts.

This gap, however, was quickly filled by Kim, et al. as they compare the energy consumption and air emissions of three
different delivery systems (Kim et al., 2008). Using U.S. Environmental Protection Agency (EPA) standards and route model-
ing, they suggest that a system that utilizes centralized drop-off locations has the least CO2 emissions, closely followed by an
e-commerce network in which packages are delivered to customers along a designated route. The third, representing tradi-
tional passenger travel, performs the worst with almost 40 times more CO2 emissions than the e-commerce network. Results
of Kim, et al. reflect closely to those of Cairns with a 68% reduction in VMT between the passenger travel and e-commerce
delivery models.

McKinnon and Edwards also examine the last mile stage for small non-food items, contrasting home delivery
operations with conventional personal travel shopping in the United Kingdom (McKinnon and Edwards, 2009). Even
when considering additional factors, such as trip chaining, product returns and redelivery, and customer bus travel,
they still find that goods delivery via coordinated delivery trucks almost always results in less CO2 emissions than
via individual trips of personal vehicles. This was further substantiated by Edwards, et al. with the caveat that environ-
mental impacts may favor private vehicles if enormous amounts of goods are purchased by the customer per trip
(Edwards et al., 2010).

Nevertheless, for the purposes of this research, it is Wygonik and Goodchild that provides the most meaningful method-
ology framework for a comparison between two delivery modes (Wygonik and Goodchild, 2012). On a detailed level, the
team constructs proximity and random assignment models using ArcGIS and EPA parameters, and with guiding assumptions,
they assess the differences in VMT and CO2 emissions between passenger travel and delivery vehicles. Their findings of a 95%
reduction in VMT with trucks and 86% less CO2 are similar to previously mentioned studies, but it is their illustrative and
easily replicable methodology that has most useful – it was adopted and slightly altered for this research’s comparison
between delivery trucks and drones, as described in the methodology portion of this paper.

2.2. Evaluations of impacts of delivery drones

D’Andrea provides helpful approximations of drone energy usage in his work calculating hypothetical operational costs of
a drone delivery system (D’Andrea, 2014). Using reasonable assumptions in payload, lift-to-drag ratio, headwind, and other
variables, D’Andrea determines a worst-case energy requirement for a drone. While his situational parameters and resulting
value are too specific for the purposes of this research, the magnitude of the energy requirement creates an insightful scale
that has been helpful in this research for comparative analysis once data was collected.

Beyond D’Andrea, however, literature regarding impact assessments of drones is scarce. This is mainly due to the rela-
tively recent introduction and little operational usage of drone technology in the delivery industry, as well as drone diversity
and proprietary information barriers. Online publications and editorials exist and have speculated various impacts, but most
focus on financial and operational elements (Wang, 2016). Those that discuss possible environmental impacts either do not
incorporate CO2 or VMT calculations (Eng, 2016) or are focused on drones in fields of conservation and wildlife protection
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(Hodgson et al., 2013). This gap in the existing literature highlights the potential advancement that the results of this paper
can provide.
3. Methodology

This research paper aims to compare the CO2 emissions, as well as VMT levels, between truck and drone delivery systems.
As a result, two models have been constructed, one to represent each mode. Conditions within the models are kept as similar
as possible, but due to data constraints and feasibility purposes, assumptions may differ. Discrepancies are noted in the sec-
tions below.
3.1. Truck delivery model

To create a fairly robust model of the delivery-by-truck side of the comparison, delivery routes were constructed as sim-
ulations of real-world operations. This required: (1) a road network; (2) a delivery depot; and (3) delivery recipients. With
these three elements, a route can be produced following the streets and freeways from the depot to the recipients and back
again to the depot. From this delivery route, VMT can be measured, of which CO2 emissions can then be calculated, as
explained later in this paper. This research has chosen the Los Angeles region as the study area. The geographic and
metropolitan expansiveness, as well as the availability of regional data, made this study area a suitable and appropriate
choice.

For the road network, the 2012 Los Angeles County Network Database from the Institute for Digital Research and Educa-
tion (IDRE) of the University of California, Los Angeles (UCLA), was adopted. The network database uses a combination of the
Environmental Systems Research Institute’s (ESRI) own collection of maps and data. However, besides trimming the exten-
sive road network of the local region to the confines of the County’s borders, IDRE has additionally calculated and appended
several cost values, including distance and travel time measurements, for each road segment to allow users to perform
meaningful network analyses on the dataset.

For the delivery depot and recipients, The LA County Address Points dataset provided by the Los Angeles County GIS Data
Portal was selected and also utilized in ArcGIS. It contains approximately 3 million primary and secondary address points
and associated geocoded information, all of which are themselves from other sources, including the Countywide Address
Management System (CAMS), various city databases, and the County’s House Numbering maps. These address points only
represent less than half of all registered addresses within the County and many points do not have their fields entirely com-
plete since it is still an ongoing project. However, all points have real and accurate addresses, and no knowledge exists of
systematic bias in the addresses that are or are not included. To serve as a basis for sampling, these data points and attributes
are sufficient.

The data point of 5560 Ferguson Drive, Commerce, CA, is the designated depot for deliveries. This address was chosen for
two reasons: (1) it is the location of an existing FedEx SmartPost distribution center; and (2) it is centrally located in the
region and away from County borders, permitting a large range of different delivery trip distances that can be analyzed. This
depot is the geographic center of the model, and it is this depot that will act as the origin and final destination of every deliv-
ery route made.

After the depot has been designated, addresses have been chosen to act as recipients, or stops along a delivery route. It is
assumed that the delivery-by-truck operations are provider-dictated, rather than customer-directed, as it is considered to be
the more logistically efficient operations system for a service provider (Wygonik and Goodchild, 2012). This means that
rather than arranging routes to respect customer-selected delivery times, a provider can organize recipient households geo-
graphically to maximize the spatial concentration of customers.

Thus, to simulate a provider-dictated system, defined areas have been created to act as zones that would be served
by the delivery trucks. These service zones are circles of a 1-mile radius, forming an area that is representative of real-
world neighborhoods like Downtown Los Angeles. Zones are placed so that, beginning at the depot, their centers are
located at some mile increment away, the furthest having a center ten miles away. Additionally, to lessen potential
biases in travel metrics, such as those produced by a direct freeway path, and to increase both the diversity of street
grid designs and the sample size, service zones have been established every twelve arc degrees around the depot. This
results in a layout of 330 circles around the depot – 30 for each mile increment away from the depot and 30 centered
and perfectly overlapping in the middle at the depot (Fig. 1). Complete or partial overlaps of service zones, especially
near the depot, are frequent but acceptable, as each zone conceptually represents a hypothetical clustering of addresses
independent of another zone’s existence. It is within these circular service zones that random points have been desig-
nated as recipients.

To test if the density of recipients has an impact on the results of the comparative analysis, ten scenarios were created in
which each scenario has a different number of recipients, beginning with 50 recipients per service zone and steadily increas-
ing by increments of 50 addresses to 500 recipients per service zone. To clarify, the first scenario has 50 randomly selected
addresses in each of the 330 service zones with 16,500 recipients in the entire scenario, while the second scenario has 100
addresses in each service zone, totaling to 33,000 recipients. This continues until the last scenario, which has 165,000 total
recipients, or 500 addresses per service zone.



Fig. 1. All 330 service zones (blue) layered on top of the 2012 Los Angeles County Network Database (red). The circular service zones were centered on the
intersections of rings and rays (black lines) with the depot as the origin.
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3.2. Truck emissions

With just the ten scenarios, VMT of the delivery-by-truck model can be obtained simply by recording the distance of the
routes from the depot to the recipient addresses and back to the depot. However, to calculate the CO2 emissions of the route,
more data, namely emission factors for delivery trucks, are needed. Since the model is based in Los Angeles County, it was
appropriate to use the web-based EMFAC 2011 Emissions Database (updated January 2013), developed by the California Air
Resources Board (CARB), for the delivery-by-truck model for the analysis year of 2014. Since many inputs are required for the
database and output results are limited, several assumptions have been made. First, delivery trucks are assumed to be similar
to FedEx Express Step Vans and are therefore classified under the EMFAC2011-HD vehicle category list as Medium-Heavy
Duty In-state Trucks (GVWR � 26,000 lbs.), otherwise listed as ‘‘T6 instate small.” Second, it is assumed that these trucks
run on diesel fuel, as opposed to gasoline. Third, the simulation delivery fleet only includes truck models that are less than
3 years old (2011–2014) to mimic real-world fleets and with an age distribution reflecting a similar, but shifted, distribution
as that of Class 3–8 Single-Unit Trucks in the Transportation Energy Data Book (specifically, the age distribution was shifted
forward by two years to match the temporal setting of the simulation, as the Transportation Energy Data Book currently only
records truck models up to 2012) (Davis et al., 2014). Fourth, all delivery trips are made under uncongested, free-flow con-
ditions with trip time dictated by the speed limits and distances of each road segment. This assumption greatly benefits the
delivery-by-truck model as, unlike with drones, congestion is a large hindrance to operations and greatly increases total
emissions. The removal of this factor will most likely produce lower emission levels than real-world results. Fifth, CO2 emis-
sions rates are based solely on running exhaust and do not account for any potential hot-start, cold-start, or idling emissions
produced at every delivery stop along a route. Lastly, it is assumed that the model truck fleet successfully meets all emission
standards imposed by California’s Pavley I and Low Carbon Fuel Standard state regulations. The resulting weighted average
CO2 emission rates based on these assumptions are listed below by speed in Table 1. These values, coupled with road seg-
ment distances, produce total truck emissions by route and have been added to IDRE’s 2012 Los Angeles County Network
dataset for travel analysis.

3.3. Truck travel analysis

ESRI’s ArcGIS is the platform used to calculate emissions for the model. Each of the ten scenarios with the depot and 330
service zones are individually uploaded and analyzed by several tools within ArcGIS. The 2012 Los Angeles County Network,
Table 1
CO2 tailpipe emission rates (kg/mi) of model truck fleet by age and travel speed.

Simulation truck fleet Speed (mph)

Model yeara Age (years) % 15 20 25 35 45 50 55 65

2014 <1 25.13 1.7102 1.3492 1.2588 1.1175 1.0287 1.0041 0.9925 1.0089
2013 1 23.99 1.7102 1.3492 1.2588 1.1175 1.0287 1.0041 0.9925 1.0089
2012 2 25.22 1.7141 1.3523 1.2617 1.1201 1.0311 1.0064 0.9948 1.0112
2011 3 25.65 1.7141 1.3523 1.2617 1.1201 1.0311 1.0064 0.9948 1.0112

Weighted average emission rates (kg/mi) 1.7122 1.3508 1.2603 1.1188 1.0299 1.0052 0.9937 1.0100
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modified with emission rates, is also added so that the Network Analyst Routing tool can be utilized. This tool uses entries
within data fields to optimize routes on the network based on available metrics, such as distance or time. For the purpose of
this research, the Routing tool is adjusted to identify the fastest route for a truck to deliver to all recipients within a service
zone. Routes have been programmed so that they always begin and end at the depot, but stops within a service zone are
permitted to be reordered to further minimize travel time. As a route is being processed, it records and sums the total dis-
tance traveled, which is equivalent to VMT.

To calculate the associated total kg of CO2 emissions for an entire delivery route or service zone, ArcGIS is programmed to
perform the following equation for each road segment along the route
Xn

i¼1

ðWAERi � diÞ
where i is a particular road segment along the route, n is the total number of road segments in the route, WAER is the
weighted average emission rate of a particular road segment based on that segment’s speed limit in kg per mile (see Table 1),
and d is the length of a particular road segment in miles. This summation of all the road segments along a delivery route
results in an estimated value for the total CO2 emissions along the route. This process for VMT and CO2 calculations is
repeated for each of the 330 circular service zones and for all ten scenarios, resulting in a total of 6600 measurements.

3.4. Drone delivery model

Since it is was assumed and determined that drone flight operations are immune to the street grid below, IDRE’s 2012 Los
Angeles County Network Database was abandoned for the delivery-by-drone model, and no network is used. However, like
the delivery-by-truck model, there is still a need for a depot and list of recipients to act as delivery origin and destination.
With the previous development of the ten scenarios for truck route simulations, not much had to be done. The ten scenarios
were simply adopted by the delivery-by-drone model, even though the drones are assumed not to be operated under a
provider-dictated constraint (nor a customer-directed one). It was deemed important to keep the depot, the recipients,
and the scenarios all the same for the purpose of comparing and evaluating the impacts of drones against those of trucks.

3.5. Drone emissions

To calculate the emission factors for the delivery-by-drone model, a different method than that for trucks has been
employed. Since most real-world delivery drones do not have tailpipe emissions, this research seeks to find the amount
of CO2 that would be emitted at power generation facilities due to drone electricity demand. To do so, significant sinks or
inefficiencies in power delivery must first be identified. This can then help determine the amount of electricity that needs
to be generated at the source in order for a drone’s batteries to receive 1 W-hour (Wh) of charge. It is assumed in the model
that drones utilize rechargeable lithium-ion batteries, which have charge/discharge efficiencies between 78% and 92%
(Valøen and Shoesmith, 2007). This percentage represents the amount of electricity a battery would deliver to the drone
compared to the amount needed to charge the battery. For the purpose of this research, a modest average efficiency of
85% is used.

The other significant sink considered in this model is electricity transmission and distribution losses incurred through the
power grid between power sources and points of usage. This includes inevitable energy dissipation within the built infras-
tructure, such as in conductors and transformers, as well as power losses from resistance in cables. According to the U.S.
Energy Information Administration’s (EIA) State Electricity Profiles, California had losses of around 7.24% in 2012, the most
recent year in its dataset (United States Energy Information Administration, 2014). This value has been adopted for the
model, which like the delivery-by-truck model, is set in year 2014. With these two inefficiencies, it has been found that
for a drone to use 1 Wh of electricity, approximately 1.2683Wh must be produced at power generation facilities (see Fig. 2).

To find the emissions associated with the production of this amount of electricity, the EIA is again referenced for state-
level data. For a total of 199,518,567 MWh generated across all sources of power in 2012, California emitted 59,369,012 met-
ric tons of CO2. These values, used for the model year of 2014, mean that an average of 0.2976 kg of CO2 was released for
every kWh of electricity generated. When adjusting for the inefficiencies mentioned previously, this rate further increases
– for every kWh used by a drone, 0.3773 kg of CO2 is emitted at power generation facilities.

It should be noted, however, that this is an average emission rate, which in California, is considered to be lower than the
marginal emission rate (Mahone et al., 2009). While the latter incorporates power grid operations and analyzes which power
plants will be utilized to address an increase in electricity demand at a given hour, this research seeks to provide a picture
focusing on the emissions that drones would release through today’s power generation facilities and so uses the average
emission.

3.6. Drone travel analysis

For the delivery-by-drone model, it is assumed that drones travel in straight paths, are not constrained by the built road
infrastructure, and can only carry one parcel at a time. Additionally, similar to the delivery-by-truck model, this model will
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Fig. 2. Due to inefficiencies present in lithium-ion battery technology and in the existing electric grid, for every 1 Wh a drone consumes, approximately
1.26 Wh must be produced at power generation facilities.
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only incorporate energy expended while travelling and does not consider other factors such as dwell time at the depot or
recipient locations. Therefore, especially with the absence of the road network as mentioned previously, the Routing tool
was found to be inappropriate, and rather, the Point Distance tool in ArcGIS is used instead. This tool calculates the direct
distance between designated points, which in this case, is the length between the depot and individual recipient addresses.
These distances are doubled to include the return trips and are recorded as VMT. This roundtrip distance is then inserted into
the following equation to calculate the associated total kg of CO2 emissions per service zone
3:773ð10�4Þ � AERdrone �
XN

J¼1

ðDJÞ
where 3.773(10�4) is the kg of CO2 emitted at power generation facilities per Wh used by a drone, AERdrone is the average
energy requirement of the drone in Wh per mile, J is a particular recipient in a service zone, N is the total number of recip-
ients in the service zone, and D is the roundtrip distance in miles. For AERdrone, this research assumes a wide range of energy
requirements to be inclusive since this can vary greatly across existing and future product models. Thus, for each of the ten
scenarios, ten sub-scenarios are created, with AERdrone starting at 10 Wh per mile, increasing at increments of 10 Wh per mile
until 100 Wh per mile. Essentially, this research paper does not adopt the energy needs of one particular drone product, but
instead measures ten different hypothetical drone products over a spectrum against the delivery-by-truck model. In doing
so, the effect of a drone’s energy requirement in its VMT and CO2 impact compared to that of a delivery truck can be
highlighted.

4. Results

4.1. VMT comparison

VMT for both delivery-by-drone and delivery-by-truck models have been obtained by summing the total distance trav-
eled outputted from ArcGIS travel analysis. To normalize across the different scenarios, VMT for each model has been divided
by the total number of recipients in all ten scenarios. The comparison can be viewed in Fig. 3.

As expected, the drone model witnessed significantly more VMT than that of the delivery truck. The 98.4% decrease in
VMT from drone to truck is relatively consistent with the Wygonik team’s finding of 95.6% from personal-use vehicles to
shared-use in a similar provider-dictated scenario (Wygonik and Goodchild, 2012). The higher figure, however, was some-
what unexpected as a drone’s straight-line travel advantage was thought to reduce VMT when compared to personal-use
vehicles which still must navigate the street grid. This result could partly be attributed to the fact that as recipient addresses
are located further away from the depot, the VMT discrepancy between drones and trucks widens at a faster rate, with
drones increasingly travelling farther than trucks to deliver the same amount of packages. Since this model uses a larger geo-
graphic scope than in Wygonik and Goodchild’s model, a higher drone VMT (and thus, a larger VMT discrepancy) emerges.
10.17 mi
16.38 km

0.16 mi
0.26 km

0

2

4

6

8

10

12

Drone Truck

VM
T 

(m
ile

s 
/ r

ec
ip

ie
nt

)

Fig. 3. Comparison of distance traveled per recipient for drone and truck delivery models.



Fig. 4. Heat maps of CO2 emission differences (kg) between drones and trucks by delivery conditions and varying drone energy requirements. Cells with
negative values (red) denote conditions in which drones emit less CO2 than trucks. Cells with positive values (blue) are situations in which drones produce
more.
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4.2. CO2 comparison

For each of the ten density scenarios, delivery-by-truck emission values outputted by ArcGIS are ordered by their service
zone distance from the depot. They are then averaged across by distance from the depot so that only one mean emission



Table 2
Maximum Allowable AERdrone (Wh/mi) for Drones to Emit Less CO2 than Trucks.

50 Stops 100 Stops 150 Stops 200 Stops 250 Stops 300 Stops 350 Stops 400 Stops 450 Stops 500 Stops

Mile 10 113 66 48 39 33 29 25 23 21 19
Mile 9 118 69 50 41 35 30 27 24 22 21
Mile 8 122 72 53 44 37 33 29 27 24 23
Mile 7 126 76 57 47 39 35 31 28 26 24
Mile 6 135 83 62 50 45 38 34 3 29 27
Mile 5 143 90 68 55 48 43 38 35 32 30
Mile 4 169 106 82 68 58 52 47 43 39 37
Mile 3 195 126 101 83 71 64 57 52 48 45
Mile 2 225 152 122 105 90 81 73 67 61 58
Mile 1 408 296 234 207 180 159 148 134 124 119
Mile 0 544 370 301 263 230 209 191 175 163 152

Fig. 5. Graphical representation of a drone’s maximum allowable average energy requirements (Wh/mi) in order to emit less CO2 than trucks by number of
stops per service zone (see Table 2). For example, a drone delivering to 50 addresses (stops) to a service zone 1 mile away from the depot must require no
more than an average of 408 Wh/mi to operate in order to be environmentally competitive with trucks in terms of CO2 emissions.

A. Goodchild, J. Toy / Transportation Research Part D 61 (2018) 58–67 65
value represents each distance category. These scenarios are subsequently combined to form a 10 � 11 matrix with each cell
entry representing the average CO2 emissions of a truck delivering to a certain number of recipients in a service zone that is a
certain distance away from the depot.

The setup is somewhat different for the delivery-by-drone model. It is the average distances traveled by drone, rather
than emissions, that are initially organized into a matrix. This matrix is then multiplied, as explained in the methodology
section, by the drone emission rate calculated previously (3.773(10�4) kg of CO2 per Wh). The new matrix is then further
multiplied by distinct energy requirements, producing several emission matrices to simulate different drone models. The
resulting delivery-by-drone emission matrices are finally subtracted by the delivery-by-truck emission matrix, generating
the resulting heat maps as illustrated in Fig. 4.

The results show several trends. First, in general, as a drone’s average energy requirement (AERdrone) increases, trucks
becomemore advantageous in terms of emitting less CO2. As explained earlier, this is attributed to the fact that as more elec-
tricity is needed to charge a drone, more emissions are produced at power generation facilities. Second, the delivery condi-
tions that begin to favor trucks first are expectedly the cells (or service zones) that are furthest away and with the most
recipient addresses. These cells experience a much higher rate of change in emissions for every Wh/mi increase in energy
requirement than other cells. This is due to the assumption in this comparative analysis that drones can only deliver one
package at a time and so must make a return trip after visiting each individual recipient, dramatically increasing their
VMT. This trend is quite clear in Table 2, which lists the maximum allowable AERdrone in order for drones to emit less CO2

than trucks, with cells of lower value representing more distant and crowded service zones. With current and future delivery
drone technology and energy usage unknown or not disclosed, it can be generally, but reasonably, said that the upper-right
portion of Table 2 is the domain of trucks (or conditions in which trucks would most likely perform better in terms of CO2

emissions), while the lower-left portion is the domain of drones, which can be observed with the gradual heat maps in Fig. 4.
Fig. 5, which graphically shows the data in Table 2, helps reveal a noticeable, but less apparent, third trend. As a service

zone moves closer towards the depot from two miles away to one mile, the maximum allowable energy requirements of a
drone increases dramatically, at least doubling in more than half of the ten density scenarios. This corresponds with an
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approximate halving of drone VMT and CO2 emissions from the two-mile to one-mile rings of service zones. The causes of
such dramatic changes are not entirely certain but can be partially attributed to the street grid and geometry in emission
calculations, as well as potentially the greater concentration of service zones near the depot.
5. Conclusions

The goal of this research paper is to determine whether or not drone technology in the delivery industry would have a net
positive environmental impact in terms of VMT and CO2 emissions. In order to do so, models of varying scenarios were cre-
ated in which trucks and drones originate from a central depot and deliver parcels to recipient addresses in circular service
zones. These simulations, coupled with algorithms and emission constants, provided estimations of VMT and CO2 emissions
that would be contrasted between modes of delivery.

Through the results of the comparative analysis, this research has demonstrated some of the complexities in looking for a
definitive answer on the potential environmental impacts. For instance, drones that require an average of 40 Wh/mi to oper-
ate will generally have a net positive impact in most delivery situations, while drones at an 80Wh/mi average energy
requirement will not. Even at a particular energy requirement level, net emissions differences can vary tremendously across
delivery service zones, as they are heavily influenced by the number of recipients and distance away from the depot. Addi-
tionally, these VMT and CO2 estimates produced are highly dependent on and are products of the assumptions and condi-
tions within the models. Slight changes, such as to power sources, the truck age distribution, or the street network, can
easily magnify or diminish values.

Still, a number of general, but significant, conclusions can be made as to the role of drone delivery in VMT and CO2

emissions:

(1) It appears that drones tend to have CO2 emissions advantage over trucks in service zones that are either closer to the
depot or have smaller numbers of recipients, or both.

(2) In these service zones, maximum allowable average energy requirements for drones are high – much higher than what
a typical drone would ever need to deliver a light package. This suggests the existence of a plausible market for drones
in the delivery industry if CO2 emissions are the weighing factor.

(3) Trucks almost firmly have CO2 emissions advantage over drones under conditions in which service zones are both far
away and have high amounts of recipients.

(4) Regarding VMT, drones expectedly far outpaced trucks, having to return to the depot after every stop.
(5) Overall, results suggest that within an environmental framework, a blended system would perform best (emit the

least) with drones serving nearby addresses and trucks delivering to ones farther.

It should be mentioned that since these models are built upon spatiotemporal-specific data as a foundation, these results
are a function of the conditions defined in this paper. For instance, as emphasized earlier, an alteration in depot and recipient
locations, even within the same Los Angeles County region, will cause changes in the results as the local street and highway
layout is not uniform in all directions throughout the area. However, while the exact VMT and CO2 emission values may not
be wholly transferable to other regions or future years, this well-connected road network is typical of many urban and sub-
urban regions in the United States, and the analytical framework used in this research allows for consideration of various
densities and other variables. Therefore, it is still quite likely that these general trends and conclusions identified in this
paper hold true for similar scopes of investigation.

To help answer the question on net environmental impacts, future research in this field should explore other emissions,
including nitrous oxides and particulate matter, and other logistical structures, including the use of depots not central to the
delivery region. Additionally, as drone technology progresses and begins operating within the delivery industry, a complete
life cycle assessment (LCA) should be pursued to acquire a more holistic perspective on environmental impacts. Nonetheless,
this paper provides important insight into the comparative CO2 emissions between drones and trucks and highlights the CO2

advantage drones may provide in some circumstances.
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