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Freight systems are a critical yet complex component of the transporta-
tion domain. Understanding the dynamic of freight movements will help 
in better management of freight demand and eventually improve freight 
system efficiency. This paper presents a series of data-mining algorithms 
to extract an individual truck’s trip-chaining information from multi-
day GPS data. Individual trucks’ anchor points were identified with 
the spatial clustering algorithm for density-based spatial clustering 
of applications with noise. The anchor points were linked to construct 
individual trucks’ trip chains with 3-day GPS data, which showed that 
51% of the trucks in the data set had at least one trip chain. A partition-
ing around medoids nonhierarchical clustering algorithm was applied 
to group trucks with similar trip-chaining characteristics. Four clusters 
were generated and validated by visual inspection when the trip-chaining 
statistics were distinct from each other. This study sheds light on model-
ing freight-chaining behavior in the context of massive freight GPS 
data sets. The proposed trip chain extraction and behavior classification 
algorithms can be readily implemented by transportation researchers 
and practitioners to facilitate the development of activity-based freight 
demand models.

Freight transportation plays a critical role in the U.S. economy. Trucks 
carry the largest market share of all freight modes (1). In the past 
few decades, as freight activity has grown and the role of the truck-
ing industry has become more critical, the need to manage freight 
demand, alleviate roadway congestion, and monitor system perfor-
mance has become increasingly urgent (2). In 2012, FHWA began 
implementation of the Moving Ahead for Progress in the 21st Century 
Act (MAP-21) to improve the efficiency, productivity, and resilience 
of the American transportation system. MAP-21 aims to develop a 
multimodal and performance-based program to address systematically 
the multiple critical needs of the U.S. transportation system (3). For 
the freight sector, MAP-21 emphasizes establishing a national freight 
network to direct limited resources for improving freight mobility on 
highways (3). As a major component of MAP-21, a series of strategic 
freight planning tools are recommended, including demand fore-

casting, performance measurements, and bottleneck identification. 
Without an in-depth understanding of freight travel patterns and the 
proper modeling of freight activities, the development of effective 
and comprehensive freight planning tools is challenging.

Activity-based freight models can support freight planning and 
demand management, but there have been few applications. In the 
past two decades, several activity-based models have been proposed 
and developed for passenger trip demand forecasting. Recently, these 
models have seen increased attention by transportation researchers 
and practitioners (4, 5). The activity-based approaches can forecast 
travel demand derived from individual activities whose patterns 
are typically considered as the basic unit of analysis (6–10). Com-
pared with the conventional four-step trip-based model, activity- 
based models reflect the links between trips and activities and can 
potentially better estimate urban commercial vehicle flows (11). 
Compared with passenger travel, freight activities are more com-
plex to model, because of the reasons outlined by Holguín-Veras 
and Patil (12).

An important difference between freight and passenger travel 
models is the need to account for the dependency between vehicle 
trips. Trucks often visit multiple customers during their deliveries 
(12), while passenger auto trips may typically include only one or 
two stops (13). The assumption behind conventional demand fore-
casting models is that trips made in one long tour are considered 
independent of each other (14), but this is not reasonable for freight 
models. The interaction between different truck trips reflects the 
actual demand as created by multiple decision makers. For this rea-
son, the trip-chaining behaviors that are inherent in freight mobility 
should be taken into account.

Data scarcity is an ongoing limitation on the development of freight 
performance measures and activity-based freight demand models 
(15). Freight activity information (e.g., trip tour and travel patterns) 
need to be used to model freight movements accurately (16). Freight 
activity information is often difficult to acquire because of concerns 
related to the protection of customers’ privacy and business com-
petitiveness. Traditionally, most freight demand forecasting studies 
have relied on manual data collection methods, such as travel diaries 
or logs and surveys. These methods are fairly costly and difficult to 
implement at a multiday level, because of low response rates and 
inaccuracy (17).

A growing number of trucking companies have resorted to GPS 
technology for fleet management (18). It has been estimated that the 
number of fleet management systems in active use in North America 
has grown from 2.8 million units in 2011 to 5.9 million units by 
2016 (19). Trucking companies’ GPS data are mainly designed for 
monitoring truck operations and driver behaviors rather than for 
estimating freight demand (20). The data have quality problems, 
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such as GPS signal loss and fluctuation, and lack information related 
to freight activity, such as trip origin–destination (O-D) and trip 
chains. Analytical approaches that eliminate erroneous data, adjust 
for missing values, and discover hidden and indirect information are 
necessary to improve the usability of truck GPS data.

The methodology presented in this paper uses a series of data-
mining algorithms to extract trip-chaining information from a large 
set of truck GPS data and then uses these data to model truckers’ 
chaining behaviors. A spatial clustering algorithm is initially applied 
to identify clusters of geospatial points where truck depots are likely 
located. Then, trip-chaining information (e.g., number of trip chains, 
dwell time, and number of trips) is calculated for individual trucks on 
a daily basis. From the extracted trip-chaining features, a nonhierar-
chical clustering algorithm is used to categorize truck travel patterns 
into different groups with distinct characteristics. The contributions of 
this study are twofold: (a) providing an efficient and effective spatial 
data-mining approach to extract freight activity information (e.g., trip 
O-D and trip chain) from massive GPS data sets; and (b) proposing a 
partitioning around medoids (PAM) clustering algorithm to categorize 
truck trip-chaining behaviors.

This paper is organized as follows. The relevant research on freight 
trip-chaining modeling is initially summarized, followed by a brief 
introduction of the GPS data set and geospatial network used for the 
study. The paper describes the development of several data-mining 
approaches for trip chain identification and freight-chaining behavior 
classification. Three-day GPS data were used to test the effectiveness 
of the proposed algorithms. Finally, the limitations of the methodology 
are discussed, and future research directions are suggested.

Literature Review

Various disaggregate activity-based models have been developed to 
capture freight activities (21). In most of these models, a trip tour 
(or chain) is defined as a sequence of trips. These trips start from 
a base depot or warehouse and end at the same location after sev-
eral deliveries to customers (4, 22). Tour-based freight models can 
more accurately describe the dependency between freight trips and 
therefore are better at explaining the dynamics of freight activities. 
Holguín-Veras and Patil (12) analyzed the trip-chaining behavior 
of commercial vehicles with data from Denver, Colorado. In their 
study, the number of trip chains, trip chain length, and the probability 
of a specific trip purpose given the relative stop location were used to 
characterize trip-chaining behavior. The study found that most trucks 
have at least one trip chain per day, and the number of stops per trip 
chain decreases with the number of trip chains.

Hunt and Stefan (23) developed a tour-based microsimulation sys-
tem to model urban commercial movements for Calgary, Alberta, 
Canada. Wang and Holguín-Veras (14) proposed two models that used 
data from a freight microsimulation tool to determine trip tour des-
tinations and the time when a trip tour is terminated. Several factors 
were found to influence trip-chaining behavior, including the choice 
of the next destination and the distance from the current location to 
the potential destination. Figliozzi (16) analyzed commercial vehicle  
tours by changing various routing constraints and found that the 
distribution of trip length largely relies on the tour type, distance 
from the depot, and number of stops per tour. In addition, the author 
pointed out that automatic freight behavioral data collection is neces-
sary for freight demand modeling. Figliozzi (24) later used empiri-
cal tour data from Sydney, Australia, to classify trip tours into three 
groups based on tour efficiency, time, and distance-related costs.

These trip tour research efforts relied heavily on manual data col-
lection methods (e.g., survey and travel diary) and simulation tools 
for analyzing freight-chaining behavior. GPS-equipped devices have 
become more ubiquitous, and the freight industry has taken advan-
tage of this technology to track and manage trucking operations. 
The use of passive and secondary freight data from these devices 
provides another opportunity to improve freight behavioral studies.

GPS data can be utilized by transportation researchers to under-
stand passenger travel behavior in the past. For example, Li et al. 
(25) used 1-week GPS data to investigate morning commuters’ travel 
patterns. Du and Aultman-Hall (26) developed a heuristic model with 
heading change, dwell, and distance between GPS points to detect trip 
ends based on multiday GPS travel data sets, and the algorithm accu-
rately captured 94% of trip ends. Alvarez-Garcia et al. (27) developed 
a Hidden Markov Model to predict individual travelers’ trip destina-
tions based on GPS data. Spissu et al. (28) analyzed the route choices 
of 12 respondents from GPS data collected over 2 weeks. Greaves 
and Figliozzi (20) discussed the issues and potential applications of 
GPS data for commercial vehicle tour information extraction. The 
authors proposed a method to process raw GPS data from Melbourne, 
Australia, into trip information (e.g., trip destination and trip tour). 
Sharman and Roorda (17) applied a hierarchical agglomeration and 
partitioning clustering algorithms to identify GPS trip ends in repeated 
destinations.

These studies show the promise of utilizing GPS data to collect 
freight activity information. However, little research has been com-
pleted with the use of GPS data to develop an effective and efficient 
approach to extract individual truck trip tour information and clas-
sify trucks’ activities with their different trip-chaining behaviors. 
This study attempted to address these issues by introducing several 
data-mining algorithms.

Data Set

The truck data set used in this study was obtained under a contract 
with GPS fleet management device vendors, with each vendor pro-
viding GPS data from multiple trucking companies (18). The ven-
dors were willing to share their GPS data with a university, since the 
resulting freight performance measures and potential infrastructure 
improvements could be beneficial for them.

Starting in 2008, GPS data from several trucking companies trav-
eling in Washington State were fed into a server at the University of 
Washington. Because of the increasing size of GPS data over time, 
several relational databases were designed to archive these data 
sets. An automatic data retrieval program was developed to fetch 
the raw files from vendors’ FTP servers on a daily basis, and the 
data were parsed and imported into databases. On average, there are 
3,400 trucks every weekday. Each probe truck, when moving, trans-
mits a GPS signal with a cellular connection approximately every 
5 min (this is not applicable when a truck idles or parks).

The GPS information includes the device identifier, engine status, 
speed, latitude, longitude, GPS status, timestamp, and kilometers 
traveled. The GPS device identifier was scrambled (hashed) for pri-
vacy protection. The engine status variable defines whether each 
vehicle’s engine is on or off. The GPS status provides the strength 
of the GPS connection for each device, since the signal may vary 
or be lost when a truck travels in urban areas where high buildings 
degrade satellite communications. More detailed information on the 
data can be found in McCormack and Zhao (29). Data from five 
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typical weekdays (from May 6 to May 10, 2013) were collected for 
this study. The data set contained more than two million GPS records.

In addition to the passively collected GPS data sets, geospatial 
data from Washington State were also incorporated into the study. 
Digital freeway data can be overlaid with the freight GPS data to 
determine when the trucks travel on freeways. The locations of rest 
areas and weigh stations were used to filter out many of the truckers’ 
non-cargo-related stops. Kilometers recorded in GPS data can be 
utilized to calculate the total distance each truck travels. All of the 
geospatial data were stored in PostgreSQL, which is an open-source 
spatial database management tool.

Methodology

The definition of a freight trip chain (tour) is presented in Figure 1. 
A vehicle leaves from an anchor point (e.g., depot) base depot at 
the beginning of the workday, visits a sequence of stops, and finally 
returns to the anchor point at the end of the day. The entire closed-
loop stop sequence is a trip chain, and a segment connecting two 
adjacent stops is a trip. As shown in Figure 1, the trip chain 
can be defined as Base→1→2→3→4→5→Base. A trip chain com-
prises several trips and there could be multiple daily trip chains 
(closed-loop stop sequences) for each vehicle (12).

A three-step data processing procedure was developed to extract 
the trip-chaining information from the raw GPS data. The anchor 
points (the base depots or origins) for each of the trucks can be 
inferred with a spatial data-mining algorithm. Finally, individual trip 
chains can be aggregated from the identified truck trips.

Trip O-D Estimation

An approach developed by Ma et al. (18) was used to estimate indi-
vidual trucks’ trip ends with the objective of differentiating non-
delivery-related stops caused by traffic congestion and intended 
stops for fulfilling certain tasks (e.g., delivery and pickup services). 
The trip end identification approach is composed of several algo-
rithms. The first algorithm uses a dwell time threshold (3 min) to 
filter out truck stops for traffic signals. This is because it is unusual 
for a truck to have a full stop for more than 3 min because of traffic 
conditions in the Puget Sound region (30). The second algorithm 
uses engine status information from the raw GPS data set to deter-
mine each truck’s movements. Any stops with the engine off are 

considered an origin or destination. The third algorithm eliminates 
abnormal trips, such as extremely high travel speed and travel times, 
with a zero value. For individual trucks, the inferred origins and 
destinations are linked together, and the truck’s trip can be identified 
as well. Of the two million records in the GPS data, 250,484 records 
(12.4%) were identified as trip origins or destinations.

Anchor Point Identification

As the starting or anchoring point of a chain, the base depot is impor-
tant in defining a truck’s trip chain. Unfortunately, because of privacy 
protection, there was no trip purpose information in the raw GPS data 
to assist in locating the truck depots. However, given the large number 
of distinct trucks traveling in Washington State and the timestamp 
information available in the GPS data, it was possible to infer the 
most frequently visited locations for trucks, which were likely to be 
their base depots. Those repeatedly visited places are also known 
as anchor points. In passenger travel pattern studies, anchor points 
typically refer to home and workplaces and can be found through 
long-term observation (31).

Sharman and Roorda applied the hierarchical clustering (Ward’s 
method) algorithm to find trucks’ recurring locations from GPS data 
(17). Their approach is novel and can effectively identify individual 
trucks’ anchor points, but it is computationally intensive and incapable 
of determining the optimal number of clusters automatically. This 
study addressed this issue by developing a spatial nonhierarchical 
clustering algorithm called the density-based spatial clustering of 
applications with noise (DBSCAN). The algorithm fully incorpo-
rates the spatial and temporal features of the GPS data sets and takes 
advantage of network information. The optimal number of clusters 
containing anchor points for individual trucks can be determined in 
an effective and efficient manner.

Geospatial Data Fusion

Trucks’ origins and destinations are unlikely to be on freeways; there-
fore, the GPS records falling on freeways were removed by spatially 
joining the freeway network data with the GPS latitude and longitude 
data. By calculating the network distance between each GPS record 
and freeways, the GPS records in a buffer of less than 10 m from the 
centerline of each freeway were eliminated. In addition, rest areas and 
weigh stations are not typically considered as trucks’ destinations. A 
buffer area with a radius of 100 m around these facilities was created to 
eliminate the relevant GPS records. The operations were implemented 
in a PostgreSQL database and only required a few Structure Query 
Language queries to execute in an efficient manner. The size of usable 
GPS records can be significantly reduced with the use of geospatial 
data fusion techniques. A total of 67,897 GPS trip ends were elimi-
nated from the total GPS trip O-D data. This led to a 25% processing 
speed performance gain. This data reduction strategy is particularly 
useful for the following spatial clustering algorithm.

Identifying Anchor Points with  
Spatial Clustering Algorithm

The frequency of a truck’s arrival at each stop can be explained in 
two ways. Each truck may visit the same location multiple times 
within 1 week, or multiple distinct trucks may visit the same loca-

Base Depot

1

3

2

5

4

FIGURE 1    Entire closed-loop stop sequence illustrating 
a trip chain.
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tion within 1 day. To measure the repetitiveness of the visited stops, 
spatial and temporal criteria need to be met:

1.	 The GPS records should be trip ends that have been identified 
with the previously discussed trip O-D estimation approach.

2.	 The GPS records should not contain freeways, rest areas, or 
weigh stations.

3.	 GPS records that lie within 50 m of each other can be counted 
as one cluster.

4.	 The minimum time interval between two consecutive trip ends 
for each vehicle should be greater than 1 h.

The spatial criteria were based on extensive visual comparisons, 
and the temporal threshold of 1 h was used to prevent the truck idling 
issue [i.e., the GPS point may fluctuate (jiggle) when a truck idles] 
from overestimating the anchor points (32). To incorporate these 
criteria into the clustering procedure, the DBSCAN algorithm (33) 
was applied to group GPS records with similar spatial and temporal 
characteristics. As opposed to the traditional nonhierarchical clus-
tering algorithms (e.g., K-means), the DBSCAN algorithm is able to 
find arbitrarily shaped clusters and can automatically determine the 
optimal number of clusters. These features fit especially well with 
the trucks’ anchor point clustering behavior. This is because a base 
depot where trucks turn off their engines may have a much higher 
concentration of GPS points than the surrounding area, and the less-
dense areas are considered noise, since these places are infrequently 
visited by trucks.

The concept of the DBSCAN algorithm is straightforward. Two 
parameters are needed to construct a cluster: Eps and MinPts. Eps 
regulates the minimum distance necessary for two GPS points to 
be included in one cluster and was defined as 50 m in this study. 
MinPts determines the minimum number of GPS points that one 
cluster should contain. For this study, there should be at least five 
GPS points in any cluster. The five points were from distinct trucks 
or the same truck traveling on different days. An assumption was 
made that one truck may visit its depot for at least 5 weekdays.

The algorithm randomly starts from an unvisited GPS point and 
searches this point’s neighbors that are within the Eps distance to 
form a cluster. This cluster will expand if nearby points are close 
enough to the existing points of the cluster and are qualified to be 
counted (i.e., from the distinct trucks or the same truck on different 
days). Otherwise, the nearby points will be flagged as noise. This 
process will continue until no adjacent points can be found. If the 
number of points within any cluster is smaller than MinPts, this 
cluster will be discarded.

Average silhouette weights were used to evaluate the effectiveness 
of the clustering result. By averaging the silhouette weights for all 
the records within each cluster, the average silhouette weight for the 
cluster can be calculated between −1 and 1. The clustered results are 
proven to be more appropriate when the average silhouette weight 
approaches 1. A sensitivity test was conducted to select the optimal 
parameter settings for DBSCAN and is shown in Table 1.

The results in Table 1 illustrate that the optimal parameter setting 
for the DBSCAN was when Eps = 50 and MinPts = 5. The DBSCAN 
algorithm was then implemented with an indexing structure in Java, 
and thus the computational complexity was reduced to O(log n), 
where n is the total qualified GPS trip ends (182,905 records). As a 
result, 5,737 clusters containing 104,758 anchor points were gener-
ated based on 1 week of data, but the algorithm run time was only 
1,292 s. These anchor points were flagged in the databases for further 
processing.

Visual Inspection

Satellite imagery provided by Google Earth was used for a visual 
inspection to confirm the accuracy and reasonableness of the identi-
fied anchor points. From the total 5,737 clusters, 100 clusters were 
randomly selected, as displayed in Figure 2.

Each cluster, which is located around the Puget Sound area in 
Washington State, contains GPS points identified by the spatial data-
mining approach. Individual clusters could be further zoomed in 
Google Earth and evaluated. Four representative zoom-in clusters 
with varying geospatial features are demonstrated in Figure 3.

Figure 3a shows a depot that is adjacent to the Interstate 5 free-
way (the yellow pins are the GPS reads). Any truck traveling on 
a freeway has been removed with the geospatial data fusion tech-
niques. The GPS points with the status of park are located around 
the depot building. Figure 3b shows a dock where a cargo ship berths. 
This is considered an important anchor point, since trucks queue 
up for loading and unloading cargo. The shape of the dock is a nar-
row strip, and several trucks are stopped next to the cargo ship for 
discharging. The figure indicates that the DBSCAN algorithm is 
able to find clusters with arbitrary shapes and can effectively group 
irregular GPS location data as one cluster.

Figure 3c presents a different situation of trucks traveling in a dense 
urban area. This is challenging to tackle, since different business 
facilities are located close to each other, and it is difficult to distin-
guish clusters with traditional clustering algorithms. In Figure 3c, the 
DBSCAN clustering algorithm successfully separated GPS trip ends 
into three different clusters, although the separate depots are adjacent 
to each other. The cluster in Figure 3d is located at a construction site 
where several dump trucks queue to load and unload loose material 
(such as sand, gravel, and dirt) for construction.

To demonstrate further the effectiveness of the proposed clustering 
algorithm, three graduate students were hired to examine visually the 
100 anchor point clusters that were identified in Google Earth. The 
primary criteria were whether the GPS points within each cluster 
scattered around a depot-like building where multiple parked trucks 
can be observed. The validation results reveal that 89 of 100 clus-
ters were reasonably identified by the proposed spatial clustering 
algorithm. However, 11 clusters were mistakenly detected as actual 
anchor trip ends.

Two scenarios can be commonly seen from these failed samples, 
and are demonstrated in Figure 4, a and b. In Figure 4a, the depot 
covers a large area, with the parking area and docking bays located 
on both sides of the building. However, because of the small dis-
tance threshold (50 m) setting, GPS trip ends on either side of the 
depot are grouped into two separate clusters. In Figure 4b, the GPS 

TABLE 1    DBSCAN Algorithm Parameter Selection

Eps (meters) MinPts
Number of 
Clusters

Average Silhouette 
Weight

25   3 12,153 0.31
50   3 12,141 0.39
100   3 11,077 0.27

25   5   5,819 0.44
50   5   5,737 0.63
100   5   4,805 0.58

25 10   2,117 0.29
50 10   1,852 0.38
100 10   1,332 0.41
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FIGURE 2    Spatial distribution of 100 anchor point clusters.

(a) (b)

FIGURE 3    Sample clustering results with proposed anchor point identification algorithm: (a) depot adjacent to Interstate 5 and  
(b) dock where a cargo ship berths.

(continued)
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points classified into a single cluster should belong to two clus-
ters, depending on different land use types. However, two differ-
ent property types coexist within this cluster. The east side of the 
cluster should be a depot at a large trucking firm, while a construc-
tion site is located on the west side of the same cluster. These two 
facilities are adjoined and are very difficult to separate with a fixed 
spatial threshold in the DBSCAN algorithm. A possible remedy 
would be to incorporate detailed land parcel data into the analysis 
to improve the clustering results (17). In this case, the land use 
attribute of each facility can be taken into account in the spatial 
clustering procedure.

After the estimated trip ends and anchor points were identified, 
individual trip chains were constructed. For each truck, the identi-
fied trip ends were ordered in a time sequence for each day. The 
first flagged anchor point of a truck was selected and appointed 
as the initial point. This anchor point was then sequentially com-

pared with the remaining trip ends until the next anchor point in  
the same cluster could be found. This process yielded the first trip 
chain. Meanwhile, travel distance, average dwell time (defined as 
the time difference between the last trip destination and the current 
trip origin), as well as number of stops (trip ends) for this trip chain 
were also calculated. This procedure continued until there were no 
more anchor points in the same cluster. There could be multiple trip 
chains that use the same anchor point after this procedure. Similarly, 
if a second flagged anchor point in another cluster can be found, 
several additional trip chains can be generated by following these 
steps. The trip chain construction algorithm will end when there are 
no more anchor stops for this truck.

Figure 5 shows multiple trip chains for a particular truck with 
a total of four trip chains for the day. The truck starts from base 
Depot 1, traverses four intermediate stops, and returns to the base 
depot as the first trip chain. Then the truck visits other stops from 

(c) (d)

FIGURE 3 (continued)    Sample clustering results with proposed anchor point identification algorithm: (c) truck traveling in dense urban area 
and (d) construction site.

(a) (b)

FIGURE 4    Error results for GPS anchor point clustering: (a) parking area and docking bays located on both sides of a building  
and (b) two property types within cluster.
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base Depot 1, and comes back again. After that, the truck stays  
at base Depot 1 for a time, and moves to base Depot 2 for multiple 
deliveries, to form the third trip chain. The truck returns again to 
base Depot 2 to complete the fourth and final trip chain of the day.

Discussion of Results and Analysis

Truck GPS data from May 7 to 9, 2013 (Tuesday to Thursday) were 
used to generate individual truck daily trip-chaining information 
with the algorithms. There were 10,425 trucks with 1.3 million GPS 
records over the 3 days. The fields for each trip-chaining record 
include truck GPS device ID, number of trip chains, average dwell 
time, number of stops per trip chain, and average trip length (i.e., 
average trip distance). The distribution of the trip chains from these 
days is shown in Table 2.

More than 51% of all the trucks made at least one trip chain during 
the study week. Among those trucks with at least one trip chain, 

more than 75% made one or two trip chains per day. This statis-
tic corresponds with the findings of Holguín-Veras and Patil (12):  
as the number of trip chains increases, the average stops per trip 
chain decreases. A significant number of trucks did not complete a 
trip chain during a day. In the Washington State study area, there is 
considerable cross-border traffic with Canada and adjacent states, 
so it is reasonable to find that some trucks traveled out of state and 
did not return to their original base depots on the same day. Google 
Earth was used to follow several trucks without any trip chains, and 
the results supported this travel pattern.

Trip-Chaining Behavior Classification

Different categories of trucks have differing chaining behaviors. For 
instance, long-haul trucks deliver and pick up goods between their 
home bases, large stores, and warehouses, with few intermediate 
stops on a daily basis. Small package delivery trucks may complete 
multiple services per day with short dwell times to drop off packages. 
These heterogeneous trucking activities are crucial inputs for freight 
demand modeling, since distinct trip purposes may impact trucks’ 
travel behaviors (4). Although several studies have relied on truck 
survey or diary data to estimate truck trip purposes, little research has 
been conducted to classify truck categories and travel patterns with 
GPS data. Because behavioral information does not exist in the raw 
GPS data, an interesting research question is whether truck category 
information can be mined with individual trucks’ chaining informa-
tion. This question suggested an approach that uses a nonhierarchical 
clustering algorithm to categorize individual trucks’ overall chaining 
behavior.

The PAM clustering algorithm was used to group trucks with simi-
lar behavioral characteristics. Different from the traditional K-means 
algorithm, the PAM algorithm attempts to minimize the overall dis-
similarity between the center of a cluster and its members (34). The 

TABLE 2    Distribution of Trip Chains from May 7 to 9, 2013

Number of 
Trip Chains

Number of 
Trucks

Average Stops 
per Trip Chain Percentage

0 5,087 na 48.8

1 2,721 7.79 26.1

2 1,303 4.32 12.5

3 584 3.11 5.6

4 251 2.44 2.4

5 156 2.32 1.5

>5 323 1.50 3.1

Note: na = not applicable.

Base Depot 1

1

3

2

4

2

1

3

1st Trip Chain

2nd Trip Chain

Base Depot 2

1

2

3

3rd Trip Chain

4th Trip Chain 

FIGURE 5    Example of multiple trip chains.
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center of this cluster is named medoids, whose average dissimilarity 
to all the other points in the same cluster is minimal. This selection 
of a cluster center ensures that the PAM algorithm has the capability 
to resist noise and outliers. Given that a total of n records should be 
partitioned into k clusters, implementation of the PAM algorithm can 
be summarized as follows:

Step 1. Randomly choose k records as the medoids.
Step 2. Calculate the dissimilarity matrix (Euclidean distance is 

utilized for simplification) between each record and each medoid, 
and assign each record to the nearest medoid.

Step 3. For each cluster, search whether there is a record that can 
lower the average dissimilarity within this cluster. If yes, this record 
will be the new medoid of this cluster.

Step 4. If the medoids for any clusters are changed in Step 3, 
repeat Step 2 until there is no change in the medoid.

Four trip-chaining features (average trip chains, average trip stops 
per trip chain, average dwell time, and average trip distance) were 
initially selected for clustering. All four features were properly scaled 
to equalize the contribution of each feature and ensure that the stan-
dardized value of each feature fell between 0 and 1. Between 2 and 
10 clusters should be selected, and the optimal number of clusters was 
calculated as four. The trip-chaining statistics for the four clusters are 
summarized in Table 3.

From Table 3, 53.8% of the total trucks were classified as Clus-
ter 1, and the average number of trip chains for this cluster was the 
highest, but the average number of stops per trip chain was only 
3.28. In comparison with the other clusters, trucks in this cluster only 
traveled a relatively short distance to complete a trip chain and had a 
short dwell time at each stop. Therefore, these trucks, in comparison 
with the total travel distance for all trucks, were more likely to be 
local delivery trucks transferring goods between their base depots 
and surrounding retailers or manufacturers.

Cluster 2 included 13.3% of the total trucks, with an average of 
1.31 trip chains and about six stops per chain. However, the aver-
age dwell time between stops within each trip chain was more than 
2 h. This long dwell time further resulted in the shortest average trip 
chain length (28.66 km). Different possible freight activities at termi-
nals may have contributed to the long delay per stop, such as drayage 
trucks that had to wait a longer time for cargo to be removed from 
vessels at a seaport, or delivery trucks that may have been loading 
or unloading goods at supermarkets for long dwell times.

Cluster 3 was composed of 1,126 trucks with approximately 
11 stops per trip chain, and the average duration for each stop was 
the shortest among all the clusters (12.7 min). On average, each truck 
completed one trip chain and traveled 101 km per day. The high fre-
quency of stops and short dwell time per stop imply that the trucks 

in Cluster 3 were likely small package delivery trucks that fulfilled 
service calls to multiple customers.

The last cluster contained 603 trucks, which was 11.8% of the 
total trucks. The trucks in Cluster 4 behaved differently from the 
other trucks. Each truck made about two trip chains per day, and, on 
average, there were more than four stops for each trip chain. How-
ever, the average trip length did not decrease as the number of stops 
increased. Trucks in Cluster 4 traveled 61.5 km for each trip, which 
was approximately six times higher than the average trip distance of 
the trucks in the other clusters. These statistics suggest that the trucks 
in Cluster 4 were manipulated by local or regional drivers, who work 
near their homes or only travel within nearby towns for short periods.

Validation

Validating the classified travel patterns was a difficult task because 
of the lack of detailed travel survey or travel diary data. Fortunately, 
the GPS traces for a particular truck within each cluster can be visu-
ally plotted on Google Earth and used to check the reasonableness 
of the cluster-based interpretations. Four trucks from the corre-
sponding four clusters were randomly selected, and their waypoints 
and possible routes were constructed by extracting the 1-day GPS 
records. A route between two consecutive waypoints was con-
nected by a straight line because of the low level of GPS location 
update frequency, but each truck’s trip-chaining activities can still 
be recognized easily.

The GPS traces for the randomly selected trucks from Clusters 1 
to 4 are respectively demonstrated in Figure 6, a to d. The truck in 
Figure 6a completed three trip chains for two identified depots. On 
average, each trip chain was composed of four stops, and associated 
with 15.5 min of dwell time for each stop. The average travel distance 
for each trip chain was 52.2 km. The track can be displayed as a span 
of time on Google Earth. The truck formed the first two trip chains 
at the beginning of the day. After that, it moved to another depot to  
serve a sequence of destinations in another area and returned to the 
depot as the third trip chain at the end of the day.

The truck in Figure 6b exhibits unique characteristics, as it left 
the depot next to a seaport in the morning, visited several destina-
tions, and finally returned to its original location. The evidence sup-
ports the assumption that trucks in Cluster 2 experienced long dwell 
times because they were discharging cargo.

Trucks in Cluster 3 had the most frequent stops within each trip 
chain compared with the trucks in the other clusters. This is sup-
ported by observing the GPS trace of a truck in Figure 6c. The truck 
traveled a long distance (127.1 km) to complete a trip chain of 
10 stops, and most of these stops were in residential areas and had 
a short average dwell time of 6.8 min. These findings imply that it 
was likely to be a small package delivery truck.

TABLE 3    Trip-Chaining Behavior Classification Results from May 7 to 9, 2013

Cluster 
Number Trucks

Average Trip 
Chains

Average Stops 
per Trip Chain

Average Dwell 
Time (min)

Average Trip 
Chain Length 
(km)

Average 
Trip Length 
(km)

1 2,872 3.28   3.52   16.05   51.45 11.86

2 710 1.31   6.03 138.21   28.66   5.97

3 1,126 1.05 10.98   12.67 101.37 11.44

4 639 1.95   4.41   18.43 244.50 61.53
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Figure 6d demonstrates a typical truck route for Cluster 4. The 
truck apparently covered long distances, with a total travel distance of 
193.4 km. This long trip chain resulted in only five stops and 18.5 min 
average dwell time and suggests a regional or local truck driver. 
Figure 7 further presents the layout of the depot where the truck in 
Cluster 4 started its trip. An inspection of the truck, trailer size, and 
terminal layout suggests that long-haul trucks use this location.

Overall, tracking individual trucks’ GPS traces within each clus-
ter supports the proposition that the proposed trip chain clustering 
algorithm is effective.

The freight trip chain extraction and classification methods pre-
sented in this paper provide useful information to support freight 
activity-based model development and freight performance measure 
monitoring. The identified trip O-D information can be used to track 
trucks’ temporal and spatial movements and can provide travel time, 
distance, and speed behavior statistics for each O-D pair. Truck tra-
jectories can be visualized by integrating the GPS with a geographic 
information system (GIS) roadway network. This is particularly 
useful for understanding truck drivers’ route choices to investigate 
and improve trucking operations. Similarly, the mined freight trip-
chaining information can be used to model individual truck drivers’ 
activity and can provide valuable inputs to activity-based models. In 

addition, the classified truck behavior information is useful for infer-
ring freight trip purpose and further for revealing heterogeneous 
freight travel patterns to estimate and predict freight demand.

Conclusions

Freight behavioral research is an important part of freight transporta-
tion modeling but is fundamentally different from the common pas-
senger travel behavioral studies. The difference is partially because 
of the complexity of freight movements, caused by dynamic inter-
actions between various logistics decision makers and the resulting 
dependencies between freight trips (i.e., trip chaining). Much of the 
knowledge about freight patterns over the past few decades has been 
acquired through cross-section data sets, such as travel surveys 
and travel diaries. As the availability of GPS data increases, there 
is an opportunity to understand truckers’ behavior with the use of 
data-mining tools and by following digital traces.

Three days of GPS data from 10,425 trucks were processed to gen-
erate information for understanding trip-chaining behavior. Approxi-
mately 51% of the trucks made at least one trip chain per day, and 
49% did not return home within 3 days because they were involved 

(a) (b)

(c) (d)

FIGURE 6    GPS traces for a truck in each cluster: (a) Cluster 1, (b) Cluster 2, (c) Cluster 3, and (d) Cluster 4.
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in interstate freight activities (these trucks were likely long-haul 
trucks). The trucks were classified into categories (clusters) accord-
ing to their trip-chaining statistics (number of trip chains, number 
of stops per chain, dwell time, and average trip distance). Four 
clusters were determined with the PAM nonhierarchical clustering 
algorithm, and heterogeneous travel patterns were observed within 
each cluster.

The contributions of this study are twofold. First, the study devel-
oped an effective and efficient spatial data-mining approach to 
extract trip-chaining information from large GPS data sets. Second, 
as opposed to traditional survey methods, the generated trip-chaining 
data can be expanded into multiple days to understand freight travel 
behavior dynamics and eventually facilitate the development of 
freight demand models. Knowing the heterogeneity of freight trip-
chaining behaviors allows for fine-tuning freight activity forecasting 
models. This can be done through agent-based simulation platforms 
to mimic freight movements by incorporating the trip-chaining fea-
tures (number of trips per chain, dwell time, average trip length, and 
so forth).

Although the proposed spatial data-mining and clustering algo-
rithms are promising as a potential approach to understand freight 
behavior, GPS-based data collection has inherent disadvantages in 
the sample size issue. Although the number of GPS equipped trucks 
is growing, it still only represents a nonrandomly selected subset 
of total truck activities within a spatial area. Therefore, it may be 
necessary to incorporate traditional freight data collection methods, 
such as travel surveys and diaries, to lower the sampling errors, or 
verify the uniform market penetration rate assumption to estimate 
the unbiased freight O-D demands (34).

Nevertheless, as MAP-21 requires that state DOTs develop or 
improve existing freight data collection methods for performance-
based transportation planning and programming, it can be seen that 
automatic data collection methods will be a trend to support the devel-
opment of freight performance measures. The market penetration rate 
of GPS devices will increase, and this will reduce sampling problems. 
In addition, survey data should never be neglected for extracting 
freight behavioral information. A driver’s perception and route pref-

erence information cannot be captured with GPS data. By combining 
survey data and GPS data, model parameters can be better tuned up 
and the validation results can be more persuasive and trustable.

Further research could enhance the ideas developed in this study. 
The trip-chaining behavior classification results could be compared 
with the ground-truth trip purposes or truck category data from freight 
surveys or travel logs. In addition, the accuracy of the depot anchor 
point identification algorithm could be further improved by integrat-
ing the depot location with land use data in a GIS. This study also 
opens new possibilities for investigating long-term freight trip chain 
regularity and variability with the use of multiday GPS data.
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