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TABLE I
PCC WITH DIFFERENT CHARACTERISTIC

Stop Lon  Stop Lat Start hour Start minute  Start time
Area.l 0.267 -0.160 0.609 -0.011 0.780
Area.2 0.035 -0.031 0.067 -0.001 0.074
Area.3 0.080 -0.062 -0.030 0.087 0.314

several hundred times per year, which is very sparse relative
to the entire spatiotemporal domain. First, relative to the entire
two-dimensional plane (latitude and longitude), the stay location
is sparse. Second, relative to the entire time domain, hundreds
of personal stay behavior data points are sparse every year [10].

In addition to the uncertainty of stay time, the following
challenges impact the prediction of stay time. i) In addition to the
spatial connection between stay events [2], in the time domain,
the arrival time of stay events and different time intervals of
adjacent stay events are highly related to the variance in stay
time. This leads to the effect of time sparsity, which brings
about challenges for achieving efficient spatiotemporal feature
representation. ii) Although stay time has obvious randomness,
it shows some degree of a linear relationship. According to
people’s needs, various stay behaviors have different stay times.
The stay time can be divided into two parts. One part is the time
spent according to the purpose of stay, and the other part is the
time spent from the place of stay to the final place.

In Table I, ‘Stop Lon’ represents longitude of stop point, ‘Stop
Lat’ is the latitude of stop point, ‘Start hour’ represents the hour
and hour when the stay event starts, ‘Start minute’ represents
the minute and hour when the stay event starts, ‘Start time’
resents the sum of the hour and minute when the stay event
starts. Table I shows PCCs in three regions. We found that PCCs
in different regions have different characteristics. For example,
the PCC of Start time in Area.l is 0.780, which has a strong
linear relationship, but the PCC in Area.2 is only 0.074, and
the linear relationship is almost non-existent. According to the
characteristics of the linear relationship reflected in different
regions, we can think that linear relationships exist on the issue
of stay time prediction, and the research and discussion of linear
relationships are significant.

When a user arrives at a place, the time spent each time for a
certain purpose is similar. On the one hand, we look at the linear
relationship from the temporal aspect, and different arrival times
will linearly affect the stay time. For example, a user usually
arrives home from work at 7 o’clock. If he/she arrives home
at 9 o’clock for certain things, then his/her staying time may
be reduced by two hours. On the other hand, we consider the
linear relationship from the spatial aspect. The additional time
consumed by different parking areas will change, including the
linear relationship. The staying location being far away from
the final destination will increase the stay time. Deep neural
networks bring about powerful nonlinear fitting capabilities.
However, nonlinear activation functions, which act as the basic
structure in deep neural networks, make the network insensitive
to these linear changes.
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To address the abovementioned challenges, we design an
RNN-based encoder model to resolve the problem of predicting
stay time. Our proposed model consists of three components,
i.e., an encoder module, an exception module and an MLP
dropout. Specifically, we only encode one stay event into hidden
vectors at a time, which avoids the effect of time sparsity. The
encoder module utilizes a multilayer perceptron (MLP) to learn
spatiotemporal features from the historical trajectory data, such
as the inherent relationship between the stay points and the
corresponding stay time [12]. The output of the MLP will be
combined to generate the final spatiotemporal features by gated
recurrent (GRU) cells. To prevent the model from overfitting,
we utilize the dropout technique of the original MLP. Moreover,
we build an exception module with neural arithmetic logic units
(NALUS) [13] in the prediction model. The NALU layer en-
hances the neural network’s ability to handle linear relationships
by reconstructing the basic arithmetic logic relationship, which
enables the proposed prediction model to have better predictive
power. Finally, we integrate the output of the exception module
to predict the stay time by MLP dropout.

The main contributions of this paper are summarized as
follows.

e In order to predict the stay time, we built an encoder model
based on RNN to capture the relationship between the stay
point of a private car and its stay time. By doing so, we
reduce the impact of sparsity and randomness of staying
events. In addition, we use dropout techniques to reduce
the overfitting of the prediction model.

® We proved a linear relationship problem that cannot be
ignored in the stay time prediction problem. Since the
existing conventional neural networks cannot cope with
the prosperous linear relationship, we have improved the
neural network’s ability to handle linear relationships by re-
constructing the basic arithmetic and logical relationships
of the network and enhancing the extrapolation ability of
the neural network.

® We conducted extensive experiments using a real-world
private car trajectory data set. Experimental results show
that, compared with advanced prediction network bench-
mark tests, our prediction model has good prediction ca-
pabilities and strong learning capabilities.

The remainder of this paper is organized as follows. In Sec-
tion II, we review the related work. Then, we present our dataset,
the stay event detection and the spatiotemporal data analysis of
private car users in Section III. In Section IV, we introduce our
prediction model. In Section V, we present the results of our
experiments and evaluations. Finally, we conclude the paper in
Section VI.

II. RELATED WORK

In this paper, we investigate how to predict the stay time of
private car users. This is closely related to human mobility and
stay time. In this section, we review the research status of both
topics.

Due to the needs of urban planning, social management,
traffic forecasting and other applications, human mobility has
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been extensively studied [14] [15]. With the development of
communication technology, it is becoming increasingly more
common to use human resources and intelligent terminals to
study human mobility models.

Researchers have begun to use big data to predict traffic
flow [16]. Spatiotemporal analysis methods have been proposed
for mobile phone activity data and for studying the relationship
between network traffic and traffic flow [17], [18]. S. Jiang et
al. [19] proposed three types of methods for extracting informa-
tion from triangular mobile phone signals, describing different
applications in spatiotemporal analysis and city modeling, and
inferring the purpose of travel by using the geographic semantics
of the travel destination. Some researchers [20] [21] have estab-
lished mobility models to characterize the spatiotemporal pattern
of human mobility, hoping to reproduce some characteristics of
human movement. C. Song et al. [22] used personal trajectories
recorded by mobile phones to discover some characteristics
of human travel and conducted a quantitative analysis of the
statistical characteristics of each human trajectory. M. C. Gon-
zalez et al. [23] proposed that human travel behavior has a highly
temporal and spatial pattern and that human travel behavior has
certain similarities. Some researchers have divided the com-
munication network into different areas, used the data in the
communication network to model the urban traffic distribution,
and finally estimated traffic flow in the area [24], [25]. Other
researchers have collected a large amount of mobile terminal
and GPS data to infer people’s points of interest and travel
purpose [26], [27]. Soares [28] used a smartphone to detect the
real-time travel mode of the intelligent transportation system.

Detecting traffic patterns is a common way to learn about the
stay event. Haosheng Huang et al. [29] reviewed the research
content of using mobile phone network data to detect traffic
modes and got the conclusion that traffic mode is the key to
travel behaviour research. The smartphone is a low-cost and
high-efficiency device in the intelligent transportation system.
In order to detect the movement and static state of vehicles,
H.R.Eftekhari and M.Ghatee [30] has developed a new inference
engine based on inertial measurement units to detect motorized
mode. Further, to monitor and evaluate driving behaviour, a
new system based on the inertial unit of the smartphone was
developed, which uses the latitude and longitude data of the
acceleration sensor to identify the driver’s behaviour [31]. D.
T et al. [32] provide a methodological framework for the com-
parative evaluation of driving safety efficiency based on Data
Envelopment Analysis, they combined smartphone data with
vehicle data to study vehicle driver efficiency. The vast majority
of network traffic in the world comes from smartphones. Stratis
Kanarachos et al. [33] has verified the role of smartphones as
an integrated platform to monitor driver behaviour. Yu Cui et
al. [34] uses smartphone GPS data to develop a comprehensive
daily activity location scheduling model to capture known and
unknown activities and build traffic simulators by modelling
activities of different levels. O.Burkhard er al. [35] combines
passive tracking of telephone providers and historical location
datato develop amethod of classification of transportation mode.

Understanding the time of the transportation system helps
people choose the right road and reduces transportation costs
and traffic uncertainty, and thus, time in intelligent transportation
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systems has been widely studied. Some scholars have focused
on vehicle travel time. W.-H et al. [36] proposed a travel time
prediction model, which predicted the high-speed travel time of
each vehicle when the vehicles on the highway interfered with
each other.

Researchers have become concerned with stay time. Some
researchers have explored the effects of spatial differences and
temporal changes on temporal patterns by using mobile phone
data [37], [38]. J. Manweiler et al. [1] and S. Liu et al. [39]
studied the stay time of mobile users. R. Low et al. [40] studied
the parking activities of heavy trucks and used a generative ad-
versarial network to predict the parking duration of commercial
vehicles [41] K. S. Kung ef al. [42] find that the maximum
length of stay of city residents when commuting is related to
some important daily human activities. Although the stay time is
random and uncertain, in 2010, researchers published a study on
the predictability of human movement in science. By measuring
the entropy of the trajectory of anonymous users, it was found
that users have 93% potential predictive power [43]. Y. Li [11]
studied the predictability of the stay time of vehicles in different
areas. Compared with human travel modes, modes of trans-
portation have completely different characteristics. J. Chen et
al. [10] used clustering and kernel density estimation to extract
the spatiotemporal characteristics of stay events. Based on a
deep neural network, a stay time predictor (STP) model was
constructed to predict the stay time of stay events.

Our work validates the new idea of linear relationships in deep
learning related to recent innovations in deep learning architec-
tures. Many popular neural network architectures [44] [45] also
advocate using linear links to reduce exploding/vanishing gra-
dients or check the relationship between nodes. In connection,
the linear relationship thinking in our article is also in line with a
broader topic in machine learning, which attempts to identify the
system’s underlying structure in the form of behavioural control
equations, which can reasonably infer the invisible part of the
space. This is also a strong trend in recurrent networks, allowing
the network to infer longer sequences than in training.Recent
work [46], [47] attempts to use sorting to enhance LSTM,
and they focus on using external memory modules to improve
generalization capabilities to find sequences outside of system
training.

In conclusion, most existing studies have qualitatively an-
alyzed the influence of spatiotemporal factors on the spatial
patterns of human mobility prediction. In this study, we focus
on the temporal patterns within human mobility patterns. Via
leveraging deep learning techniques, we aim to model the stay
time pattern and combine historical spatiotemporal data to quan-
titatively predict the stay time using private car trajectory data.

III. PRELIMINARY

In order to conveniently describe the concepts of stay event
detection and prediction, this paper defines some critical defini-
tions.:

Definition 1: stay event: a stay event refers to a
situation where the vehicle stays somewhere temporarily, does
not continue to move forward, and is in a stopped state.
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TABLE II
TRAJECTORY TRIPS IN THE DATASET

Record ID  User ID Start Time Stop Time Start Lon Start Lat Stop Lon Stop Lat
23127 402500  2016-03-01 09:22:54  2016-03-01 09:24:00  114.093705  22.540422  114.093862  22.540712
318768 402500  2017-06-02 14:54:06  2017-06-02 14:58:55  114.054053  22.571113  114.064652  22.572648
852972 402500  2017-10-05 06:52:43  2017-10-05 06:58:15  114.076328  22.534818  114.060030  22.533915

Algorithm 1: Stay Event Detection from Trajectory Trips.

Input: St retrieved from the private car trajectory
dataset
Output: The record of the stay statue
function STAY EVENT DETECTION
Extract S7; from the dataset by User ID
Sort St; by Record ID
while dist(S%;, Si') < 300m do
while T'he duration > 120 s do
Record S%; in stay statue of the User ID
end while
end while
end function

Definition 2: stay time: the vehicle changes from a moving
state to a stationary state and then from a stationary state to a
moving state. The duration of the static state is the stay time.

A. Trajectory Data and Stay Event Detection

Through our previous works [48], [49], we have obtained
the trajectory dataset of large-scale real-world private cars from
urban scenarios [4], [6]. When installing GPS/OBD devices in
private cars, the collection of private car trajectory data was
explained to the volunteers, and their consent was obtained. At
the same time, when uploading data, the owner’s real vehicle ID
is anonymous, and the International Mobile Equipment Identity
(IMEI) number is assigned to the GPS/OBD device as the unique
ID of each vehicle for the purpose of privacy protection. In this
dataset, the collected trajectory information is expressed in the
form of a single trip. Each trip contains the record ID of the trip,
vehicle ID, start and end times, start and end positions, mileage,
etc. In addition, the driving status of each trip is recorded (such as
speed, steering and current alarm information). For instance, the
travel information (TI) contained in trajectory trips is presented
in Table II.

Based on the trajectory dataset, we propose an algorithm to
detect stay events from TI in the trajectory trips. As shown
in Algorithm 1, the algorithm consists of the following steps.
First, we extract the travel information of the same User ID in
the dataset as Sp; = (Record ID, User ID, Start Time, Stop
Time, Start Lon., Start Lat., Stop Lon., Stop Lat.) and sort them
according to the Record ID. There are two reasons why the data
are abnormal. The first reason is that the stay time being below a
certain standard may be a special situation, such as flameout due
to abnormal conditions. The second reason is the error of GPS.
Our purpose of setting two values is to clean up any abnormal
data in the dataset. Second, when we obtain trip information, we

calculate the starting point of the current trip and the stopping
distance of the previous trip. If the distance between the two
trips does not exceed 300 m, then it is judged that the position
information is not missing. Finally, we calculate the stop time of
this trip and the start time of the next trip. If the stay time exceeds
120 s, then it is judged that the stay event of this trip is effective,
and the current stay time is recorded. Earth’s surface distance
can be calculate by the Haversine formula as follows [50]:

dist(A, B) =2 x r X arcsin/a (1)
duration = t; — t; 2)
where
a = sin®b + cos(lat;) * cos(lon;) * sin’(c)

- lati — lat]-
B 2
_lon; —lon;
B 2
where r is the radius of the earth, dist(A,B) is the distance
between two Str:A(Lon;, Lat;, t;), B (Lon;, Lat;, and t;).

b

B. Spatiotemporal Analysis of Stay Time

After retrieving the stay events, we conduct a spatiotemporal
analysis of stay time to study the connection between stay time,
arrival time and stop points.

Usually, private cars have thousands of stay event records and
thereby generate many stop points in their trajectories within a
long period of time such as one year. Inspired from the findings
in [4], we observe that most of the stop points are concentrated
in several fixed areas.

Overall, the Fig. 1 shows that most stop points occur within
a specific range of arrival times. Each private car owner’s travel
mode has its characteristics. This uniqueness is reflected in two
aspects. The first is the uniqueness of parking time. As shown
in Fig. 1, some users have a multimodal distribution in parking
time, and some have a unimodal distribution. The second is the
uniqueness of the number of stay events. The four users in our
sample recorded the most parking times in three years, which
were 7,060, 5,264, 4,013 and 3,969. Most users record less than
a thousand times. To show the uniqueness, we selected the four
users with the most records. Fig. 1(a) shows that the stay events
usually occurs between 5 to 9 o’clock and 12 to 15 o’clock. In
the stay event from 5 to 9 o’clock, the stay time tends to be
concentrated in 10 minutes to 20 minutes. In the period from 12
to 15 o’clock, the stay time is more evenly distributed. Fig. 1(b)
shows that the stay events usually occurs between 10 and 15
o’clock, and the stay time is mainly concentrated between 10
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Fig. 1.  Temporal distribution of stay events.

and 30 minutes. Fig. 1(c) shows that the stay events are evenly
distributed in the period from 7 to 18:00, and the stay time is
evenly distributed in each period. Fig. 1(d) shows that the stay
event occurred during the period from 12 to 18 o’clock. Between
12 and 18 o’clock, the stay time is mostly between 5 minutes
and 20 minutes. It is worth noting that a lot of stay time also
occurred at 7 o’clock, and the stay time at this time was evenly
distributed between 5 minutes and 60 minutes. The above four
users fully demonstrate the uniqueness of the stay event.

Fig. 2(a) illustrates the spatiotemporal distribution of stay
time, in which the x-axis and y-axis represent the coordinates
of stop points, and the z-axis provides the stay time of the
private car user. The numbers in Fig. 2 represent the arrival time
corresponding to the stay events. Figure 2 a shows two clusters
with details in this small area. The stay time corresponding to
the arrival time from 12 o’clock to 14 o’clock is the red part, and
the stay time corresponding to the arrival time from 5 o’clock to
6 o’clock is shown in another colour. This shows that when the
spatial characteristics are similar, the influence of the temporal
characteristics on the stay time cannot be ignored. Furthermore,
Fig. 2(a) shows the characteristics of the stay time corresponding
to different arrival times in the same small area. In the same small
area, when the arrival time is 4 o’clock, the stay time is within
10 to 20 minutes. After reaching 5 o’clock in time, the range of
stay time begins to increase upwards and downwards. Until the
arrival time is from 12:00 to 14:00, the range of stay time reaches
the maximum. It is worth noting that when the arrival time is 11
o’clock, the increasing trend of the stay time range is interrupted,
and the stay time is rapidly reduced. When the arrival time is
18:00, the stay time is shortened and concentrated. In summary,
we found that only focusing on the spatial features in Fig. 2
and the staying time of users in an area is sparse and random.
However, by combining the temporal and spatial characteristics,
we found that the stay behaviour has an apparent clustering
trend. The stay time pattern can also be reflected according to
the arrival time. The above introduction fully illustrates that the
temporal and spatial characteristics of the user’s vehicle provide
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Fig. 2.  Example of stay time distribution. Numbers in different colors repre-
sent different arrival times. In the same stop points, stay time changes according
to arrival time.

the possibility of predicting the stay time. In summary, we found
that only focusing on the spatial features in Fig. 2 and the staying
time of users in an area is sparse and random. However, by
combining the temporal and spatial characteristics, we found that
the stay behaviour has an apparent clustering trend. The stay time
pattern can also be reflected according to the arrival time. The
above introduction fully illustrates that the temporal and spatial
characteristics of the user’s vehicle provide the possibility of
predicting the stay time.

The above information is indirectly included in the travel data.
Our goal is to predict the stay time y; by making use of the travel
information S%.; of private cars. In the next section, we propose
capturing the spatiotemporal features according to the changes
in the arrival times and stop points of stay via constructing an
RNN-based stay time prediction model.

IV. METHODOLOGY

M. C [23] proposed that human travel behavior has a highly
temporal and spatial pattern and that human travel behavior has
certain similarities. J. M [1] used a machine learning algorithm
to predict stay time at WiFi hotspots. Rely on the powerful
representation ability of neural networks for spatiotemporal
features, J. Chen [10] integrated a decision tree with a recurrent
neural network (RNN) to predict the stay time of vehicles via
extracting spatiotemporal features. To obtain the spatiotemporal
representation of stay events, we use a multilayer perceptron
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(MLP) and gated recurrent units (GRUs) in the model to map the
original data to the hidden feature space. After encoding through
MLP and GRU, we obtain the spatiotemporal representation of
the hidden layer space, and then, we use the fully connected layer
to map the distributed feature representation into the sample
space of hidden vectors. Our work validates the new idea of
linear relationships in deep learning related to recent innovations
in deep learning architectures. Many popular neural network
architectures [44] [45] also advocate using linear links to reduce
exploding/vanishing gradients or check the relationship between
nodes. In connection, the linear relationship thinking in our
article is also in line with a broader topic in machine learning,
which attempts to identify the system’s underlying structure in
the form of behavioural control equations, which can reasonably
infer the invisible part of the space. This is also a strong trend in
recurrent networks. We use the NALU layer to reconstruct the
basic arithmetic logic of the hidden vectors in the sample space
to enhance the processing ability of the linear relationship of
the model. Neural networks began to pay attention to the linear
relationship between input data. Through the calculation of the
linear relationship, the long-term stay event is connected with
other stay events. At this time, the long stay incident was also
affected. Itis considered a meaningful event and will not become
an abnormal situation ignored by the neural network.

Finally, to prevent overfitting, we use an MLP with a dropout
function to decode the hidden vector into the final prediction
value of the stay time.

A. Gated Recurrent Unit

A gated recurrent unit (GRU) is a variant of a recurrent
neural network (RNN). The unit introduces a gating mechanism
to avoid the vanishing gradient. It is simpler than other RNN
variants (such as LSTM). The output of the hidden layer h; of
the GRU is calculated as the following function:

7y = 0(Wirxt + bir + Whrh—1) + bnr) (3)
iy = o(Wiixe + bii + Whih—1y + bni) 4)
ng = tanh(Wipay + bin + rt(Winh(e—1y + ban)) (5
he = (1 —dg)ng + g % hyy (6)

where o is a Sigmoid function, and 7, 7; and n; are the reset gate,
update gate and cell state, respectively. The role of reset gate r,
is to determine how much of the information in the previous cell
hidden state n; needs to be forgotten. The role of update gate 2,
is to determine how much information from the previous hidden
layer state is passed to the current hidden state h;. These gates
control the learning process of the neural unit and are formed
from a large amount of training data. However, the stay data
of private cars are obviously sparse, which makes it difficult to
learn a gate with good function. The adjacent stay behaviors will
affect one another. To avoid this influence, we randomly input
the spatiotemporal features into the model. We believe that the
temporal influence should be explicitly entered into the learning
of the gate mechanism, so we use the arrival time as one of the
inputs, as previously described.
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B. Neural Arithmetic Logic Units

The generalization of neural networks has been the focus of
many researchers. In short, neural networks are more similar to
memories than to learning. The reason [13] why the network’s
behavior does not generally appear as systematic may be the
large number of nonlinear activation functions used in neural
networks. Inspired by the idea of enhancing the linear relation-
ship in neural networks, A. Trask et al. [13] proposed the neural
arithmetic logic unit (NALU), as shown in the Fig. 4.

A neural arithmetic logic unit uses two neural accumulator
units (purple circles) with bound weights to support basic arith-
metic functions, controlled by a gate (orange circles) as follows:

W =tanh(W) ©o(M) a= Wz (7
m = expW (log(| © | +¢)) g = o(Gx) ®)
y=g0a+(l-g) om )

where W is guaranteed to be in the range [-1:1] and biased to
be close to -1, 0, and 1. m saves the results of running in log
space. g is a learned Sigmoidal gate to control basic arithmetic
function types. As mentioned earlier, there are a large number of
linear relationships between stay events. In the face of new small
changes, neural networks need to respond sensitively. NALUSs
greatly improve the learning ability of the linear relationship
between the neural network and the extrapolation ability of the
prediction model.

C. Stay Time Prediction Model

As discussed in Section III, the travel information of private
cars is sparse, and stay time is unstable. An MLP and RNNs
can be used with travel information to capture spatiotemporal
characteristics. We leverage this insight in designing the en-
coder, which addresses the problem of spatiotemporal sparsity,
to extract spatiotemporal features. Our prediction model consists
of three key components—an encoder module, an exception
module, and MLP dropout—as shown in Fig. 3. The exception
module is based on the NALU layer, where we reconstruct the
basic arithmetic logic relationship of hidden state. MLP dropout
takes a hidden vector and outputs predicted stay time ;. This
module reduces the possibility of model overfitting by dropout.

1) Encoder: We already know that spatiotemporal informa-
tion is related to the stay time. To extract spatiotemporal features
from travel information, we first embed S%.; using an MLP to
obtain a fixed-length hidden vector h;. S%; contains the user’s
arrival time (%;) and arrival location (lon;, lat;). As mentioned
earlier, we believe that the arrival time of the stay event and
different time intervals of adjacent stay events are highly related
to the change in stay time. We mitigate a certain time sparsity
effect by using a single input. The hidden vector h; contains
complete spatiotemporal information for trips. Recurrent neural
networks are often used in encoders and encode the input feature
into a fixed-length hidden vector, which contains most of the in-
formation in the feature. Recurrent neural networks can generate
similar probability distributions. The stay time is a space- and
time-varying process. We use some GRUs to capture spatiotem-
poral changes in hidden space, which can effectively accumulate
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