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As urbanized populations and concentrations of activities increase, there is growing pressure in 

dense and constrained urban areas to unlock the potential of every public infrastructure element 

to address the increasing demand for public space. Specifically, there is a growing demand for 

space for parking operations related to the access to land use by people and goods. On one side, 

ridehailing services, such as those provided by Uber and Lyft, are on the rise and with them the 

associated passenger pick-up/drop-offs (PUDOs) operations. On the other side, freight and 

servicing trips require supply of adequate infrastructure to support vehicle access and 

load/unload activities, and final delivery/service to customers. This dissertation aims to provide 

insights based on real-world datasets and tests to support the management of two key public 

infrastructure that provides access to land uses: alleys and curb lanes. To achieve this goal, first, 



 

this dissertation will investigate what roles alleys play in cities and inspect alleys’ physical 

characteristics and vehicle parking operations in theses spaces. Secondly, this research will 

examine factors of PUDO dwell time and evaluate the impact of adding curb lane PUDO zones 

and geofencing ridehailing vehicles to these zones using a hazard-based duration modeling 

approach. Finally, this dissertation will analyze the impact of different ridehailing curb 

management strategies on curb lane utilization based on simulation. 
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Chapter 1. INTRODUCTION AND RESEARCH QUESTIONS 

The challenges faced by different transportation network users in dense and constrained urban 

areas are expected to increase as urbanized populations and concentrations of commercial 

activities increase (Dablanc, 2009; Nourinejad et al., 2014; Rodrigue et al., 2009; USDOT, 

2015). Therefore, there is growing pressure in cities to unlock the potential of every public 

infrastructure element to address the increasing demand for public space. 

This dissertation acknowledges this challenge and focuses on two main types of urban 

transportation infrastructure that provide access to land uses: alleys and the curb lanes. This PhD 

dissertation considers two independent research plans, one focused on alley infrastructure and 

commercial vehicle operations, and the second focused on curbspace parking and passenger 

pick-up/drop-off operations.  

 

1.1 ALLEY INFRASTRUCTURE AND COMMERCIAL VEHICLE OPERATIONS 

Freight and servicing trips require the supply of adequate infrastructure to support vehicle access, 

load/unload activities, and final delivery/service to customers (Dablanc, 2007). However, 

existing infrastructure attributes (e.g., width, height clearance, road infrastructure barriers) and 

the accommodation of street furniture (e.g., streetlights, bollards, benches, green infrastructure, 

power lines) may not meet the dimensional requirement to support the commercial and 

emergency operations. Additionally, potential conflicts with vulnerable transportation network 

users (e.g., passenger vehicles, pedestrians, and cyclists) may impact the efficiency and safety of 

these operations.  

Despite their historical role as providing access to land uses for freight and servicing, to a 

large extent, alleys are overlooked as a resource in modern freight access planning. No major 

city in North America has a comprehensive geospatial database of its alley network. There is no 

literature about the current nature of commercial vehicle operations in these spaces. Without that 

knowledge, it is impossible to understand the capabilities of these infrastructures as part of the 
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transportation infrastructure network, nor is it possible to conduct comprehensive urban freight 

planning.   

Alleys can provide access to land uses and parking infrastructure for freight, service 

vehicles, emergency and passenger vehicles, as well as cyclists and pedestrians. This is 

particularly true for cities with extensive alley networks. For instance, the city of Chicago, 

Illinois, has approximately 1900 miles of alleys. The City of Los Angeles, California, has an 

estimated alley network of more than 900 miles, and Baltimore’s alley network encompasses 

over 600 miles (Newell et al., 2013). Moreover, the City of Vancouver has 404 miles of alleys 

(Ardis, 2014), City of Montreal 280 miles (Plourde-Archer, 2013), City of Toronto 194 miles, 

and Beijing, China,1,204 hutongs or alleys (Leinonen, 2012).  

The City of Seattle, like many cities, lacks accurate, up-to-date and, detailed information 

on the location and features of its alleys, and the operations occurring on them. Meanwhile, the 

city faces both urgent- and longer-term pressures to better manage alleys as part of the larger 

urban freight infrastructure. With a population of 725,000 and a density of 8,350 residents per 

square mile, in 2018, Seattle was the sixth most congested city in the USA (Cookson, 2018; Guy, 

2018). Since 2010, Seattle has grown by 18.7%, becoming the fastest growing city in the decade 

among the 50 largest U.S. cities (Guy, 2018). At the same time, the city is expected to grow by 

120,000 additional inhabitants and 115,000 additional jobs by 2035 (OPCD, 2018). Seattle’s 

unprecedented growth and geographic constraints set up a significant challenge for the 

municipality to efficiently meet the demands for the movement of people, services, and goods. In 

its alleys, Seattle is fortunate to have a resource that not all cities have, providing a “back door” 

to the city.  

This research focuses on the alley’s role as a network connector, its physical attributes 

and constraints, and its use by parked vehicles. Specifically, this effort aims to answer the 

following research questions in Chapter 2 of this dissertation: 

- Research Question 1: How do physical characteristics of alleys play a role in their 

function? 

- Research Question 2: What are the characteristics of vehicle parking operations in 

alleys by time of day and vehicle type? 
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To our knowledge, this effort has resulted in first comprehensive alley inventory in the U.S. 

with an accurate GIS map of the network’s geospatial locations as well as measurements of 

physical attributes (e.g., alley length, alley width and, narrowest points). The attributes collected 

in this study directly impact alley operations and functionality, particularly for commercial and 

emergency vehicle access. Before this time, the city relied on a countywide street network 

database that only included alley centerlines. Evidence-based understanding of the existing 

parking behaviors in alleys in Seattle, was obtained through data collection of use patterns for 

every vehicle occupying the alley during observation periods. The data collected include vehicle 

type, parking duration, and, consequently, how long and at what times of day alleys were vacant. 

 

1.2 CURBSIDE PARKING AND PASSENGER PICK-UP/DROP-OFF (PUDO) 

OPERATIONS 

Cities are dealing with a greatly evolving transportation landscape in which technological 

advancements and new business models are providing alternative ways to move people and 

goods. One of these changes involves ridehailing services, which allow users to book rides and 

pay for car service through a smartphone app. For instance, cities such as Seattle, Wash., San 

Francisco, Calif., and New York have experienced significant increases in the numbers of 

ridehailing trips in recent years. Seattle observed 91,000 ridehailing trips in 2018,  five times the 

level in 2015 (Gutman, 2018). Similarly, San Francisco’s ridehailing trips in 2016 were 12 times 

the number of traditional yellow cab taxi trips (SFCTA, 2017), and that ratio was two times in 

New York (Schneider, 2020). 

With the growth of ridehailing services, concerns about their potential negative impacts 

have increased as well. According to Erhardt et al. (2019), there are several mechanisms by 

which ridehailing vehicles can increase traffic congestion, including empty cruising behavior, 

which is vehicle miles driven without transporting passengers, and the impacts of  passenger 

pick-up/drop-off (PUDO) vehicle maneuvers on traffic flow in areas of high demand for 

ridehailing services.  

Curbside management is increasingly vital because of the growing popularity of ridehailing 

services, coupled with the strong ongoing demand for the curbside by all road users. Efficiencies 
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in curbside management offer the possibility to minimize negative impacts (e.g., from searching 

for parking, double parking, or queuing) while supporting outcomes such as economic 

development and social equity. 

A potential curb management policy solution is the designation of passenger PUDO 

zones for ridehailing vehicles, representing a space and set of operating guidelines to manage 

where, when, and how rideshare activities occur. PUDO zones and their operating guidelines can 

be fixed or flexible. For instance, the University of California Irvine offers 17 fixed PUDO zones 

to which requested ridehailing pick-ups and drop-offs  on the campus are directed (Uber, 2018). 

Similarly, the Seattle-Tacoma International and Portland International airports have established 

fixed PUDO zones to which ridehailing vehicles are directed by operating agreements with 

ridehailing companies (Port of Portland, n.d.-b; Port of Seattle, 2019). Flexible PUDO zones can 

be used to respond to relatively short-term needs, such as high ridehailing activity over weekends 

due to nightlife (DDOT, 2019). In addition to the PUDO zone implementation examples above, 

multiple cities in the U.S. are considering new pilot tests or extending their current PUDO zone 

capacity, such as in Fort Lauderdale, Florida (City of Fort Lauderdale, 2018), Washington, D.C. 

(DDOT, 2019), San Francisco (Smith et al., 2019), Cincinnati, Ohio (Fehr and Peers, 2019), and 

Bellevue, Wash. (City of Bellevue, 2019). 

PUDO zones can be coupled with virtual management strategies that are enabled by 

advances in technology. Geofencing is one of these strategies and consists of a virtual perimeter 

around a real-world geographic area that is established to direct or exclude vehicles and 

passengers to/from the area. Geofencing has been applied on the Seattle-Tacoma International 

Airport premises to document trip activity and billing (Port of Seattle, 2018). In Bellevue, this 

technology helps to minimize conflicts between ridehailing vehicles and bicycles by keeping 

ridehailing PUDO operations out of bike lanes (City of Bellevue, 2019).  

All these reasons have motivated a series of studies to describe ridehailing PUDO 

operations in the street and make recommendations about the allocation of PUDO zones (City of 

Fort Lauderdale, 2018; DDOT, 2019; Fehr and Peers, 2019; Lu, 2018; Smith et al., 2019). 

Collectively, these studies have investigated PUDO operation metrics, including dwell times, the 

number of passengers picked up or dropped off, PUDO operations demand and the number of 

simultaneous PUDO operations, double-parking, parking occupancy, business satisfaction with 

PUDO zones, PUDO citations, and curb space productivity (measured as the number of PUDOs 
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per unit length-of-curb space per unit of time). however, the effectiveness of current and 

emerging curb management technologies on these PUDO metrics and the inter-modal curb space 

competition have not yet been investigated. Therefore, there is a gap in understanding of the 

factors that impact these operations as an essential part of the analytical capabilities for curb 

management evaluation such as simulation tools. 

Notably, more research into PUDO dwell time is warranted, as it is a key operational 

metric for the design and allocation of scarce curb infrastructure. The dwell times of ridehailing 

vehicles in PUDO zones dictate the maximum utilization of these spaces and, consequently, the 

probability of finding a space, a primary element of curb level-of-service (National Academies of 

Sciences, Engineering, and Medicine, 2010). Our research included in Chapter 3 and Chapter 4 

of this dissertation aims to answer the following questions: 

- Research Question 3: What factors impact the dwell time of passenger car PUDO 

operations in the street? 

- Research Question 4: How does curb space allocation to PUDO zone impact  

PUDO dwell time in the street? 

- Research Question 5: How does geofencing of ridehailing vehicles impact  

PUDO dwell time in the street? 

 

To answer research questions 3-5 we developed the first sound parametrization of ridehailing 

passenger load/unload dwell times by using a hazard-based duration model approach. 

Naturalistic data from a previous study of PUDO operations in Seattle (Ranjbari et al., 2020) is 

leveraged to link dwell times essential characteristics including the locations of these operations, 

passenger maneuvers, operation management strategies, and nearby traffic. 

Curb management relies on metrics to design, plan and assess the performance of parking 

infrastructure. Parking occupancy, for instance, is a conventional parking metric frequently used 

by local governments in performance-based parking pricing programs. Specifically in Seattle, 

parking rates are frequently adjusted to achieve a parking occupancy rate between 70 and 85 

percent (Baruchman, 2018). 

Allocating curb space for PUDO activity is not a new concept, however, due to the 

increased demand for ridehail in recent years and the need to efficiently manage the space, there 
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have recently been efforts to improve the analytical capabilities for curb management and 

identify and enhance the understanding of relevant metrics.  

The lack of curb data and metrics is a challenge that hinders research in this area. To 

overcome this, some authors have used interview-based research for identifying policy problems 

and solutions based on public and private perspectives (Diehl et al., 2021). Another series of 

studies attempted to model different aspects of parking and ridehailing services, but had to rely 

on assumptions regarding the performance of ridehailing vehicles to represent real-world 

operations without empirical data (Beojone & Geroliminis, 2021; Kondor et al., 2020; Su & 

Wang, 2019; Xu et al., 2017; Yu & Bayram, 2021). 

Building upon the research on PUDO operations dwell time contained in Chapter 3 and 

Chapter 4 of this dissertation, our research aims to answer the following questions in Chapter 5: 

- Research Question 6: How does space allocation for PUDO operations impact traffic 

congestion and overall curb utilization in areas with high PUDO curb demand?  

- Research Question 7: What is the impact of curb and ridehail management strategies, 

including geofencing and increasing ridehail passenger occupancy, on PUDO and 

other curb users’ operations? 

 

This research aims to understand the impact of ridehail curb management strategies on traffic 

operations, PUDO operations and other curb users, including paid parking and commercial 

vehicle loading. This was achieved by using simulation models to evaluate, under varying street 

and curb demand profiles, the effect on curb management metrics of adding PUDO zone space, 

geofencing PUDO vehicles to PUDO zones, and increasing the occupancy of PUDO vehicles. In 

VISSIM software (version 9), the discrete event simulation was built by using the software 

graphical user interface. The VISSIM-COM interface with Python (version 3.8) was used to 

access and manipulate VISSIM objects during the simlaution dynamically. Our hazard-based 

duration model developed in Chapter 4 of this dissertation was used to estimate PUDO vehicle 

dwell times in the simulation 

By responding to the proposed research questions 3-7, we derive practical implications 

for curb management policies by evaluating ridehail management strategies and improving the 

representation of passenger load/unload dwell times for future research and practice. 
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Chapter 2. BRINGING ALLEYS TO LIGHT: AN URBAN FREIGHT 

INFRASTRUCTURE VIEWPOINT 

This chapter is structured as follows; a literature review section discusses the role of alleys in 

cities worldwide based on academic journal articles, city guidelines, manuals and city planning 

documents. The data collection method section describes the alley inventory and occupancy 

methods developed. The Seattle case study section describes the empirical findings from the 

approach implementation in the City of Seattle. The chapter concludes with a summary of 

findings and recommendations for policymakers.  

 

2.1 LITERATURE REVIEW 

2.1.1 Concept of the Alley and Predominant Roles 

Alleys are narrow pathways between or behind buildings functioning like a narrow street or 

path with walls on both sides (Cambridge Dictionary, n.d.). Alleys are referred to by many 

different names in the literature. The term laneway is usually used in Canada, UK, and Australia; 

mews, in UK; and hutongs in China. Alleys range from the pre-car era designs when cities 

needed to be walkable to post-automobile alleys in North America offering access to motorized 

vehicles (Wolch et al., 2010).  

Alleys primary role is connectivity rather than mobility (Bain et al., 2012), providing 

access to land use either for motorized mode, non-motorize modes, or both. They have different 

spatial infrastructure characteristics than streets. Alleys’ narrow width and location between 

buildings give them a volumetric attribute (i.e., length, width and vertical clearance attributes) 

that is often missing in a multilane street (Bain et al., 2012). 

For alleys with vehicle presence, often, there is only enough space for one vehicle to 

drive through the alley. That means that few vehicles use them, and those vehicles are traveling 

low speeds. In these cases, as spaces with low traffic volumes and speeds, the alley may be the 

perfect candidate for shared use with non-motorized modes. However, alley’s physical 

constraints may lead to conflicts between users as the demand for these spaces and the need for 
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access alley’s adjacent land use. For instance, during the periods where large vehicles are 

present, alleys can become inaccessible to other users, such as pedestrians (NACTO, n.d.).  

For alleys operate as shared streets, the usage of bollards, signs, and design features help 

to make clear the intended alley users (NACTO, 2013). Hutongs are examples of non-motorized 

shared spaces. They consist of narrow streets, single-floor or low-rise courtyard buildings, and a 

highly connected street grid that facilitates walking and cycling and limits motorized traffic 

(Zhao, 2014). Similarly, woonerfs in the Netherlands act as shared streets and can be described 

as cul-de-sacs with highly restricted automobile access that privileges activities such as biking 

and walking (Wolch et al., 2010). 

In some countries such as the U.S., U.K., and Canada, alleys have been predominantly 

designed to have a utilitarian, freight and emergency access function (Ardis, 2014); providing 

access to the rear of large lots and space for garbage cans, utilities, and other everyday aspects of 

living (Ford, 2001; HPO, 2014). In early Washington D.C., the back of the lots likely had 

kitchens, stables, carts, wagons, and animals in addition to other dependency buildings, 

equipment, and storage areas (HPO, 2014). Chicago’s alleys saw servants and suppliers working 

in middle-class areas and small manufacturing, repair shops, rear houses, and children’s play 

space in working-class areas (Conzen, 2005). 

In some cities such as Montreal and London, where great fires consumed much of their 

buildings, planners turned to alleys not only as service streets but as firebreaks, and new 

standards were established for widths, construction and building heights on alleys (Ardis, 2014). 

Additionally, today’s fire codes regulations establish the right-of-way minimum dimensions 

requirements. The International Fire Code indicates that lanes shall provide emergency vehicles 

an “unobstructed width of not less than 20 feet and an unobstructed vertical clearance of not less 

than 13 feet 6 inches” (International Code Council, 2015). 

More recently, some cities are turning into alleys to reach the goal of reducing 

environmental impact. The City of Chicago, IL, pioneered their Green Alley Program in 2006 

(Chicago Department of Transportation, 2007), after which other cities such as Washington DC 

followed (District Department of Transportation, n.d.). These programs strategies such as the 

management of stormwater and the mitigation of the urban heat island effect (the increased 

temperatures in urban or metropolitan areas due to human activities) and the implementation of 

permeable asphalt (Newell et al., 2013).  
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Alleys have also served as inhabited spaces. For instance, in the late 19th century and 

following the Civil War, a large influx of poor urban migrants resulted in an increase of 

substandard alley dwellings (Wolch et al., 2010) in the United States. Some contemporary cities 

have recently passed zoning regulations that encourage housing density in alleys. Mainly, alley 

houses are a growing trend in Canadian urban centers such as Toronto (Mathieu, 2019) and 

Vancouver (City of Vancouver, n.d.).  

Alleys can serve as functional social spaces that foster community cohesion by offering 

a safe place for active recreation, pedestrian activity, community gatherings and events. For 

instance, the City of Sydney’s, Australia, Laneways Temporary Art Program ran between 2008 

and 2013 to ¨inject new energy into the urban life and stimulate creativity and innovation in the 

city.¨ (City of Sydney, n.d.). In Seattle, more than 5,000 people attended alley events as part of 

the Alley Network Project between 2008 and 2012. Seattle’s alley events and projects have 

included art and poetry events, lighting installations, pet adoption events, holiday caroling, and 

film and sport event screenings (Sadeghi K. Majid et al., 2015; Stenning & Somers, 2012). 

Some alleys, often located in commercial areas, can support commercial development 

by providing space for outdoor dining, additional entrances to neighboring businesses or could 

become tourist destinations, increasing adjacent property values. In some locations in China and 

Europe, old alleys have survived urban planning makeovers to become cherished elements of 

contemporary cities. Beijing´s 1,204 hutongs have great historical value and have recently 

received renewed commercial interest from the real estate and tourism industries (González 

Martínez, 2016). Similarly, mews in London hosts some of the most desirable addresses in the 

city and have become a tourist attraction in and of themselves (Ardis, 2014). 

 

2.1.2 Empirical Studies of Alleys 

The following summarizes studies that have used direct observations as part of their approach to 

document alley characteristics and vehicle activities in cities worldwide.  

Several studies have investigated alley space with a focus on surrounding buildings in 

China and the U.S. Two of Beijing’s alleys showed in their premises building types such as 

lodging, educational, commercial and residential (Yao & Xin, 2018). In Washington D.C., alley 

dwellings have been studied at different times of the city’s history. In 1896 and 1912, two 
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investigations documented dwellings in 35 and 275 alleys, respectively. More recently, in 2011, 

the District of Columbia Office of Planning conducted the D.C. Historic Alley Building Survey. 

It was designed to identify extant alley buildings determined to be 50 years or older in over 15 

historic districts (HPO, 2014). These studies share the limitation that infrastructure physical 

attributes and vehicle use characteristics of the alleys were not investigated. 

Motivated by an evaluation of the appropriateness of alley housing in Toronto, an alley 

inventory was conducted that documented which alleys were public, private and are serviced by 

the city for snow removal or salting (City of Toronto, 2006). The study identified 2,433 alleys 

and their lengths, but it acknowledges that outstanding work remains to validating alley 

classifications and completing field confirmation of alley characteristics. The report provides 

estimates of alley widths, typically between 16 and 19 feet, and allowing passage for a single 

vehicle in one direction. The connectivity role of alleys, providing vehicular access to the rear of 

lots, is considered as their main function. City services in Toronto alleys include regular services 

generally limited to litter pick-up/cleaning during the spring, summer and fall seasons, and 

salting in the winter months to provide safe passable conditions after snow events.  However, 

city-wide snow plowing operation is not feasible in alleys due to constrained operating 

conditions and the absence of snow storage space (City of Toronto, 2006). 

In the City of Los Angeles, Wolch et al. (2010) conducted physical audits of 300 alleys 

and behavioral observations of activities inside alleys. Alleys were selected for audits by 

dividing the total population of 12,309 alleys into the city’s thirty-six Community Planning 

Areas and applying a random stratified sampling approach. Based on the distribution of LA’s 

alleys, most of them are in residential zones (58%) followed by commercial districts (20%), 

industrial zones (6%) and zones with other land uses (9%) (Wolch et al., 2010). 

Wolch et al.’s physical audit instrument was the Systematic Pedestrian and Cycling 

Environmental Scan for Alleys, which includes 14 questions divided into three sections 

concerning: i) surrounding land uses ii) substrate and iii) use, conditions, and safety. Wolch et 

al.’s behavioral observations were conducted in 30 alleys during weekdays and weekends and 

consisted of 12 observation periods per alley of 5-10 minutes each. Based on this study, access 

by vehicles was a prominent use of LA’s alleys. 



 

 

11 

Also, in Los Angeles, Seymour and Trindle (2015) quantified the different uses in one 

renovated and one control alley. The alleys were located one block away from each other and 

primarily surrounded by commercial land uses and one residential building with offices.  

Focused on commercial vehicle curbside loading, Transportation for London (2017) 

published guidelines for facility size required for freight vehicle parking and navigation and 

specified strategies for reducing multimodal conflicts at the curb. Although still under 

development, the guide considers a street audit and provides examples of adequate baseline data 

that would be gathered in the audit, including the number of vehicle lanes, waiting and loading 

restrictions, multimodal facilities, and primary vehicle accesses for premises. 

There is a growing pressure in cities to expand upon the current purpose of their alleys 

and better use underutilized alleys to encourage housing density, create lively spaces, pedestrian 

and bicycle connectors, and spaces for delivery vehicles to load and unload. As cities aim to 

incorporate in their plans the increase in connectivity for non-motorized modes and other 

functions provided by alleys, research on alleys as elements of urban structure and dynamics is 

warranted (Wolch et al., 2010). 

By deprioritizing vehicle access, some of these initiatives can have unintended 

consequences for freight and emergency vehicles access if the current and future use of alleys by 

these vehicles is not explicitly considered. Meanwhile, there is limited coverage of freight and 

emergency vehicles in guidelines for multimodal streets (NYSERDA, 2019).  

The literature review of empirical studies in alleys showed that some alley features had 

been researched including adjacent building types, number of access points, pavement type, and 

slope. Related to activities in alleys, previous studies documented uses by vehicles and non-

motorized modes. Despite these efforts, alleys have not been the subject of any comprehensive 

study focused on commercial and emergency response vehicle activities, including those of 

freight, waste management, servicing, firefighting, and police vehicles. Thus, little is known 

about the physical characteristics that could preclude vehicle movements in these spaces. 

Additionally, the existing studies do not capture sufficient data about vehicle operations in alleys 

including type of vehicle and stop durations. 

In the Seattle case, the City’s Right-of-Way Improvement Manual considers that the 

primary purpose of commercial alleys is to provide access for freight loading, waste collection 

for commercial uses, and parking (City of Seattle, n.d.-b). However, Seattle’s alley advocates are 
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working to change the idea that alleys should be solely utilitarian (Miguel, Otárola, 2015). A 

study about Seattle’s alleys in 2010 estimated that reinvigorating alleyways could increase the 

amount of total public space in the city by 50% (Fialko & Hampton, 2011). 

As Seattle and other cities investigate repurposing and better using underutilized alleys, an 

adequate assessment of physical characteristics and vehicle activities in these spaces is key to 

determine what is feasible in terms of street design and freight and emergency vehicle 

adaptation. 

2.2 DATA COLLECTION METHOD 

2.2.1 Alley Inventory 

We developed data collection process to collect the locations and features of all alleys in 

Seattle’s Greater Downtown area, which produces a replicable ground-truthed data collection 

method based on direct observations.  

 

Survey Form 

The developed survey captures three types of features: 

1. Connectivity to Street Network. Constrained and congested alleys can push onto the street 

the queue of vehicles trying to access the alleys or force the driver to cruise for adequate space to 

park. Additionally, sometimes, alleys are the only access route to particular land use. The study 

included these characteristics: 

• Name of streets that the alley connects to,  

• Whether the alley is connected to a one-way or two-way street,  

• Whether the alley is one-way or two-way traffic, and 

• The direction of one-way alleys. 

The connectivity to the street network of an alley will depend on its end-points. An end-

point of an alley is defined as the point where an alley begins or ends.  By definition, every alley 

has two end-points; each of them falls in one of the following categories (see Figure 2-1): 

A. Access Point: End-point located at the block face of a city block, connecting the alley 

directly to the street network. This is the most common example of an end-point. Often, 
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there will be buildings on either side of the alley’s access point, but in some cases, there 

may be vacant lots or surface parking lots. 

B. Dead End: End-point where an alley ends at a dead-end, such as a building or a staircase. 

There are three subtypes of alley dead-ends: 

1. Dead end ending at a physical barrier,  

2. Dead-end at a driveway, which could lead to private or public infrastructure, and  

3. Dead end at an open area (private or public property), such as a public square. 

C. Intersection: End-point where two alleys intersect inside a city block. 

 

 

Figure 2-1. Alley end-point classification.   

 

2. Design. The way an alley is designed has a direct impact on its functionality. The 

inventory examined design features at the alley end-points, alley aprons, and alley interiors.  

Alley end-point features include width and height with measures recorded as the smallest 

width (i.e., effective width) and height within 30’ from the alley entrance. Researchers used the 

30’ threshold because it captures the bumper-to-bumper length of most cargo vans and trucks 

conducting deliveries.  

The alley apron is a driveway (an entranceway) that starts at the curb and continues until 

the start of the alley pavement. The apron edge uses a curb cut to provide vehicle access from the 
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street. Apron width, length, and cross slope were recorded; slope can determine whether fully 

loaded handcarts can maneuver. 

Alley’s interior features measured included alley length (end-point to end-point), 

pavement surface type (e.g., concrete or asphalt), narrowest point, and fixed overhead 

obstructions. As most emergency vehicles are 16 feet tall or under, the researchers documented 

any fixed overhead obstructions under that threshold (such as trees, fire escapes, wires). We also 

recorded any fixed on-the-ground obstructions that protrude 1’ or more into the alley, as this 

impacts an alley effective width.  

 

3. Access. The features below were included to capture the infrastructure to which the 

alleys provide access to, and that may impact its use:  

• Driveways connected to the alleys, including each driveway that grants access to 

a parking lot; driveways that link the alley with a nearby street; and driveways 

that connect the alley to private property. 

• Location of buildings’ main entrances.  

• Private freight load/unload infrastructure.  

• Passenger parking, if visible or signed.  

• Restrictions on alley usage, as shown on posted signs. 

 

It is important to note that all alley features measured in this study were chosen in 

consultation with the Seattle Department of Transportation (SDOT) and other City agencies, 

including police, fire, ambulance, and public utilities. These groups depend on alleys to provide 

access for commercial and emergency response vehicles to buildings.  

 

Data Collection Mobile App and Instruments  

This research included the development of a mobile data collection app that we have made 

publicly available online (SCTL, 2018). We implemented the survey form and data-collection 

process on tablets using Esri GIS software Survey123, ArcView, and ArcGIS Online. These Esri 

products offer a data-collection tool with features that facilitate data quality control, such as 

visualization and editing of the collected data. Additionally, Survey123 allows the selection of 

the most appropriate basemap to assist the geolocation input, which was manually collected as a 
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GPS coordinate reading by dropping a pin in the basemap. For this project, we selected the 

World Street basemap from ArcGis.com viewer that was last updated in July of 2017 (ESRI, 

2017) to assist the manual input of the infrastructures’ location.  

For accurate measurements, data collection teams were equipped with a measuring wheel 

and a laser device. The first one was used to collected alley length (typically the longest 

measure). Every other Design feature was collected with a Laser measuring device. 

 

Data Quality Control 

Our research set up a quality control process to reduce errors from entering and propagating 

within the database. This helped to ensure the quality of the data before it was collected, entered, 

or analyzed; it also helped to monitor and maintain the data through the collection effort. We 

identified the types and possible sources of error specific to this type of project including: 

1. Positional error refers to the inaccuracies of the GPS coordinate readings due to 

device issues (e.g., low satellite signals in urban canyons) and mistakes by humans 

manually collecting this data with tablets. 

2. Attribute error is associated with the remaining non-spatial alley data collected with 

the survey. Some examples are incorrect data entry due to wrong measurements or 

data mistyped. Lack of access to the information due to obstructions or safety issues 

may also result in inaccurate data. 

3. Conceptual error. The description of a real-world phenomenon or object such as an 

alley requires its conceptualization through identification and classification of 

relevant information. Concepts wrongly used can result in information misclassified 

and not captured information.  

Table 2-1 below shows the developed project data quality-control design to address the 

three types of errors above. Table 2-1 illustrates the measures implemented in three stages: 

before data collection, during data entry, and after data entry. Three types of resources carried 

out quality-control procedures throughout the three stages: 

1.  Supervisors: responsible for defining and enforcing data-collection standards and 

methodology; training the data collectors; and monitoring and maintaining the 

database. They handled the data-control measures implemented before data collection 

and after data entry. 
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2. Collectors: responsible for data entry in-field and carrying out same-day data quality-

control checks after data entry. 

3. Survey app: the digital and online tool that helped create entry constraints, eases the 

digitization of the data as it is collected and ends the need for manual information 

digitalization. The survey app played a critical quality-control role because it was 

programmed to limit inaccuracies in the data-entry stage by considering the data 

structure rules, attributes, and relationships. 
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Table 2-1. Data quality control measures 

 Stage 1. Before Collection Stage 2. During data entry Stage 3. After data entry 

 In office In field In field In office 

 Supervisor(s) Collector(s) Survey App Collector(s) Supervisor(s) 

Positional 

- Establish physical 

reference of geopoints 

- Deliver training 

session to collectors 

about GPS location 

collection with survey 

app 

- Instructed to be 

always aware of 

their location 

- Keep track of 

surveyed alley 

locations with 

hard copies of 

maps 

- Includes manual 

collection of GPS 

reading by dropping 

location pin 

- Includes updated 

base map with city 

blocks, building 

outlines, King 

County TNET alleys 

and loading bays in 

alleys. 

- Conduct same-day 

check of surveyed 

alley locations by 

reviewing alley 

endpoints in ArcGIS 

Online 

- Check street names 

of alley endpoints 

- Check alley TNET 

id the alley exists in 

King County’s TNET 

database 

- Check alleys in 

TNET database to 

identify alleys not 

visited (i.e. 

missed) 

Attributes 

(Infrastructure 

features) 

- Build questionaries’ 

data entry constrains 

in survey app 

- Deliver theoretical 

training session to 

data collector 

- Deliver training 

session on data 

collection with survey 

app and measurement 

devices regarding 

infrastructure features 

- Take clear 

photos to aid data 

entries 

- Includes visual and 

written aid for data 

fields 

- Conduct same-day 

check of data 

collected in field 

using ArcGIS Online 

platform 

- Check numeric 

fields for outliers 

- Conduct revisits 

to missing alley 

locations 

Conceptual 

(Infrastructure 

concepts) 

- Establish metadata 

and vocabulary related 

to the surveyed 

infrastructure 

- Deliver theoretical 

training to collector 

- Train collectors in 

field on how to identify 

infrastructure relevant to 

the survey  

- Write open-

ended comments, 

take additional 

pictures and use 

“Other” 

categories for 

“undefined” 

cases 

NA = Not applicable NA = Not applicable - Resolve 

collectors’ 

observations 

- Check 

classification of 

alley endpoint 

types with pictures 

collected and 

basemap in 

ArcGIS Online 
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Data Collector Training  

We recruited and trained 32 data collectors, who worked in teams of two to improve security 

conditions and enable efficient operation of the multiple data-collection instruments (e.g., laser 

measurement device, measuring wheel, tables). As data quality control measure, data collectors 

received approximately 5 hours of training in three different sessions covering the following 

topics: 

1.   Concepts regarding the infrastructure surveyed: This session instructed data collectors in 

alley concepts and the features. This session was given in a classroom-type setting, with 

a slide presentation that covered every feature collected in the survey.  

2.  Practical aspects of data collection: This session was done in-field, leading the collectors 

through the process of collecting data, such as how to use the questionnaire in the tablet 

and the measuring tools. Special attention was paid to teach how to take accurate 

measurements with the laser and wheel devices and how to divide the collection work 

between the data collectors effectively. 

3.  Data quality control tasks: The final session centered on how to implement the data-

cleaning process. After every shift in-field, one of the data collectors in each pair 

cleaned the data he/she just collected. 

2.2.2 Alley Occupancy 

Occupancy data included use patterns such as how long vehicles were parked in alleys, how long 

and what times of day alleys were vacant, and what types of vehicles were parking in alleys. 

Observations were made during business days hours (i.e., Monday through Friday from 8 am to 5 

pm). Using human data collectors to track alley usage allowed for the reliable capture of 

important details, such as windshield permit stickers and company names on vehicles. 

 

Survey Form and Instruments 

Each data collector was stationed at one of two positions in the alley. Each alley was divided in 

half, with each data collector covering three or four zones that met roughly in the middle of the 

alley. To aid with the identification of zones, detailed maps of the alleys subject of study were 
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created. These zones allowed data collectors to quickly determine and record wherein the alley, a 

vehicle was parked.  

Any vehicle parked in the alley for one minute or more was recorded manually in field using 

hard copies of data-collection sheets and maps specifically tailored to each alley and data 

collector’s position. The data-collection sheet was divided by zone, with space for the data 

collector to record: 

● The start/end time a vehicle spent parked in the alley (recorded to the minute); 

● The type of vehicle parked in the alley; 

● If visible, the company name for commercial vehicles parked in the alley; and 

● If visible, the presence of a commercial permit on a passenger vehicle parked in the alley. 

● If visible, the Uber/Lyft logo on a passenger vehicle parked in the alley.  

 

Our research designed a highly detailed commercial vehicle typology to track specific vehicle 

categories (see   
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Table 2-2). The typology covers 16 separate vehicle categories, from various types of 

commercial vehicles to passenger vehicles. For this research, the term commercial vehicle 

includes trailers, box trucks, cargo vans, cargo vans, service vehicles, waste management trucks, 

and construction vehicles. In the case of passenger vehicles, data collectors tracked, whenever 

possible, if the drivers were conducting the specific activities of goods delivery/pick-up or 

passenger pick-up/drop off . If relevant, collectors also tracked the presence of an Uber/Lyft logo 

and the company name. 
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Table 2-2. Types of Vehicles for Alley Occupancy Study.  

 COMMERCIAL VEHICLES (CV) 

Delivery vehicles  

a.1 Trailer Truck (T) 

 

a.2 Single Unit Truck – Box 

Truck (B) 

        

a.3 Cargo Van (CV)  

           

a.4 Cargo-bike (C) 

            

b. Waste Management Trucks 

(G)  

        

c. Service Vehicles (SV) 1 

 

 

d. General Van (V) 2 

 

e. Construction Vehicles (C)  

    

 

  



 

 

22 

Table 2-2. Types of Vehicles for Alley Occupancy Study. (continued). 

II. PASSENGER VEHICLES  

Passenger Vehicle Making a 

Package or Food Delivery (D) 3 

      

Vehicle Making a Passenger 

Drop-off (e.g. Uber / Lyft) (U) 

        

Passenger Vehicle (P) 

 

III. OTHER CATEGORIES 

a. Taxi (X)  

  

b. Motorcycle (M)  

     

c. Buses (B)  

 

d. Emergency Vehicles (E) 

 

1 Service vehicles include single-unit, vans, sedans and pick-ups vehicles used for service 

operations.  
2Cargo or service vans usually display a company logo. If there was not enough 

information visible, vehicle was marked as a general van.  
3A personal vehicle being used to deliver packages (such as Amazon Prime Now) or food 

(such as Amazon Fresh). 
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Data Collector Training  

As a data quality control measure, data collectors received approximately 3 hours of training in 

two different sessions: 

1. Theoretical training session. This session was given in a classroom-type setting, with a slide 

presentation. It instructed data collectors on the data collection on the following aspects of 

the data collection effort:  

● The study parameters, 

● The typology of vehicles, 

● The data collection method, 

● Review of data collection forms and collector’s position in-field. 

 

2. In-field training session. This session was done in-field, leading the data collectors through 

the actual process of collecting data and applying the vehicle typology. Finally, data 

collectors did a 20-min data collection exercise and classified vehicles that parked in the 

alley while being supervised.  

 

2.3 CASE STUDY OF SEATTLE 

We applied the alley inventory and alley observation methods in the Greater Downtown area of 

Seattle. For the alley inventory, the researchers completed the data collection over three weeks in 

January 2018. Data collectors walked 941 city blocks to examine and collect data on the 417 

Greater Downton area alleys (see Figure 2-2). 

Data collectors were unable to obtain full information inside 6% of all Greater 

Downtown area alleys, most commonly because construction activity in or near the alley resulted 

in the alley being closed or fenced off. Less frequently, a truck operating in the alley did not give 

the data collectors enough room to record measurements safely and accurately.  

Seven alleys were selected for the alley occupancy study. Some alleys provide access to 

off-street passenger car garages, some connect to drive-through hotel entrances, and some are 

used mostly for commercial purposes. Each alley as shown in Table 2-3 was chosen to represent 

various features (such as the number of access points for freight or passenger parking); 
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characteristics (pavement type, alley width, overall condition); and location (some are near—and 

therefore serve—office buildings, retail centers, residential buildings, or some mix of these).  

Additionally, substantial development is projected adjacent to two of the observed alleys 

(#1 and #2). Four new residential towers will add over 2,000 apartment units and approximately 

1,000 off-street parking stalls that will be accessed through alleys (SDCI, n.d.).  Currently, these 

alleys serve several land uses including hotels, surface parking lots, residential buildings and 

businesses (see Table 2-3). 

We deployed data collectors to observe the seven alleys and apply the granular vehicle 

typology introduced in Table 2-2. Six out of the seven alleys were observed for three or four 

days for two weeks in February and March 2018. The remaining alley was observed for one day 

due to security issues. The data collected provided a sample of 437 parking operations between 

the seven alleys.  
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Figure 2-2 Map of the Greater Downtown Area alleys surveyed.  

Dots represent the alley end-point. Note: Map scale forces dots to overlap, so not all 417 

alley end-points are discernible.  
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Table 2-3. Alley Locations for Occupancy Study 

Alley 

# 

Location Surrounding Land 

Use 

# of Days 

Surveyed 

Time 

Frame 

Surveyed 

Total 

Hours 

Surveyed 

1 From Virginia to Lenora 

Streets, between 4th and 

5th Avenues 

Two hotels; surface 

parking lot; one 

residential building; and 

one office building. 

4 8:00 am to 

5:00 pm 

36 

2 From Stewart to Virginia 

Streets, between 4th and 

5th Avenues 

Residential tower, 

commercial businesses; 

and surface parking lot. 

3 8:00 am to 

5:00 pm 

27 

3 From Columbia to 

Marion Streets, between 

2nd and 3rd Avenues 

Restaurants, offices and 

a public parking garage. 

3 8:00 am to 

5:00 pm 

27 

4 From Harrison to Thomas 

Streets, between Terry 

and Westlake Avenues 

Offices and restaurants. 4 8:00 am to 

5:00 pm 

27 

5 From Union to Pike 

Streets, between 1st and 

2nd Avenues 

A hostel, retailers, and 

restaurants. 

1 8:00 am to 

5:00 pm 

9 

6 From Pine to Stewart 

Streets, between 2nd and 

3rd Avenues 

Temporary 

construction, restaurants 

and retailers.   

3 8:00 am to 

5:00 pm 

27 

7 From Union to Pike 

Streets, between 4th and 

5th Avenues 

Hotel and retailers. 3 8:00 am to 

5:00 pm 

36 
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2.4 RESULTS AND DISCUSSION  

2.4.1 Alley Infrastructure Feature Findings based on Alley Inventory  

Alley effective width: 90% of the alleys in the Greater Downtown area are just one-lane wide.  

Figure 3 shows the distribution of alley widths measured as the narrowest alley end-point width. 

In practice, most of Greater Downtown area alleys are restricted to one lane for trucks, cargo and 

service vans. As box trucks are roughly 9.5 feet wide (including mirrors) and delivery vans are 

typically 8.8 feet wide, alleys up to 19-feet-wide provide only one lane for commercial vehicle 

use. 

This fact is critically important to measure the load/unload capacity of the city’s alleys. 

When a truck, car, or van parks in a one-lane alley, it blocks all other vehicles there unless they 

back into the alley to park, or back out of the alley to exit. Backing into street traffic and backing 

up into alleys are both prohibited by the Seattle Municipal code for safety reasons (City of 

Seattle, n.d.-a). 

Additionally, horizontal restrictions inside the alley can reduce the alley’s overall capacity. 

10% of the alleys showed within-alley restrictions that reduced alley travel width by more than 

one foot due to overhead or on-the-ground fixed obstructions.  

Based on alley width estimates in other cities, Seattle’s alleys resemble those in Toronto, 

which are typically between 16 and 19 feet (City of Toronto, 2006). On the other hand, Seattle’s 

alleys are slightly wider than Beijing inner city’s hutongs (10-16 feet) (Zhao, 2013). 
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Figure 2-3. Cumulative Probability and Histogram of Alley Effective Widths in Seattle 

Greater Downtown Area.  

Note: The figure represents 408 of 417 total alleys because nine alleys were missing alley 

width values.  

 

Points of access to land use: 73% of Greater Downtown area alleys contain entrances to 

passenger parking facilities.  

Data collectors recorded all parking facility access points in each alley. Of the 417 Greater 

Downtown area alleys, 311 alleys (or almost 75%) contain entrances to passenger parking 

facilities. This within-alley passenger parking access suggests an increased frequency of vehicle 

entry/exit and added demands on alley use. This is important to note because these alleys cannot, 

therefore, be allocated solely to commercial and emergency vehicles.  

The typical parking facility types found were underground garages, covered surface-level 

garages, and open-air surface parking lots. The covered facilities often had more than one access 
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point in an alley, such as a separate entrance and exit. A total of 767 parking facility access 

points across 311 alleys were recorded. 

About 33% of the alleys served at least one private freight load/unload infrastructure 

inside the alley. Of those, 75% also contained at least one parking facility access point. In other 

words, about 25% of the 417 surveyed alleys contain both freight and passenger parking facility 

access points. This suggests a confluence of potentially competing users in these alleys. 

In some cases, albeit rarer, data collectors identified a private building entrance (for 

people, not vehicles) located inside an alley. Of the 417 alleys surveyed, 29 contained one 

private building entrance.  

Local policies in Seattle consider alleys as primary means for access to the rear of homes, 

apartment buildings and businesses. Alleys are prioritized for delivery and servicing-vehicle 

access and allow expedited load/unloads up to 30 minutes. At the same time, Washington State 

Legislation considers that “no person shall stop, stand, or park a vehicle within an alley in such 

position as to block the driveway entrance to any abutting property” (Washington State 

Legislature, n.d.). 

These policies could lead to incongruencies in commercial vehicle operations in alleys 

such as that parking is not allow at all. This results from the combination of two of the findings 

of the alley inventory, alleys are narrow and frequently show vehicle access points to land uses. 

Therefore, alley blockages impact vehicles parked in the alley but can also limit access to private 

parking facilities for passenger and freight. 

 

Infrastructure conditions: Building managers’ proactive role in alley maintenance.  

Our research exposed anecdotal evidence that some building managers demonstrated a proactive 

role in the maintenance and managing of the alleys adjacent to their property by either:  

● Enforcing rules to ensure intended use,  

● Providing security cameras and/or staff, 

● Placing speed bumps to slow traffic,  

● Getting pavement improvements completed, and 

● Placing signage to identify different usage areas and vehicle circulation rules clearly. 
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One example of this is shown in Figure 2-4. The recently constructed buildings on both 

sides of the alley are owned and managed by the same company. During the design phase of 

these mixed office/retail buildings, deliberate steps were taken to ensure the alley (although 

publicly owned) was designed to accommodate both truck deliveries to the alley’s two loading 

bays as well as regular passenger vehicle traffic for the two parking garages accessed via the 

alley. Notably, the alley is signed one-way for passenger vehicles while still allowing trucks to 

travel in both directions. Also, the alley has a pedestrian crosswalk connecting two building 

entrances, a wide width, speed bumps, clear sight-lines, surveillance cameras, and frequent 

building security patrols. 

 

 

Figure 2-4. Alley in South Lake Union, Seattle, with a high level of ownership from the 

developer.  Source: Imagery ©2018 Google.  

 

Alley Signage: Wide variety of restrictions signage found in Seattle’s alleys   

22% of alleys had signage indicating some type of use restriction of the space. The types of 

restrictions found are listed below and it is worth noting that 5% of alleys showed one-way sings. 

● One-way traffic direction 
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● customer and resident parking rules,  

● no parking restrictions, 

● load/unload parking, 

● construction signs, 

● garbage bin location rules,  

● alley closures,  

● access restrictions to non-local traffic,  

● pedestrian access restrictions,  

● no trespassing and littering,  

● fire lane - do not block area,  

● maximum vertical clearance. 

 

Most of alleys are less than 19-feet wide but only 5% of them showed one-way signs, this could 

lead to unsafe situations caused by vehicles backing out of alleys. Defining entering and exiting 

routes for vehicles and clear signage are measures to avoid these situations. 

The proportion of alleys with signage was lower in Seattle than in LA, when compared to 

Wolch et al. (2010)’s study, which showed that 65% of LA’s alleys had signage concerning 

parking, dumping, dog waste, and trespassing, It is worth noting that some of the categories of 

restrictions were similar in both cities, and Seattle showed additional types related to deliveries, 

fire lane, circulation restrictions, vertical clearance and temporary restrictions such as alley 

closures and construction zones.  

 

2.4.2 Alley Usage Findings based on Alley Occupancy Study  

Observed Demand: Parking per alley is typically limited to less than three commercial vehicles.  

The authors investigated the occupancy of the seven alleys by parked vehicles. Six levels of 

occupancy were considered ranging between 0 vehicles (vacant) and five vehicles parked at the 

alley at the same time. For each alley and day of data collection, the proportion of time that the 

alley had the different levels of occupancy was calculated. Figure 5 shows proportion of time 

that each alley showed different number of vehicles averaged between the days of data 

collection. 
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The occupancy study finds that all seven study alleys predominately had just one to two 

vehicles parked at a time. Higher occupancy levels of three or more vehicles were observed only 

during a small fraction of time in each of the seven alleys. The proportion of time with three or 

more vehicles averaged 8% between the seven alleys, and the maximum observed was 14% at 

the alley located at Pike & Union /1st & 2nd. 

 

Level of Vehicle Activity: Alleys are vacant about half of the time during the business day.  

As shown in Figure 2-5, the seven alleys were unoccupied between 23% and 83% of the studied 

hours. The percentage of time that the seven alleys were empty averaged 50%. 

 

 

Figure 2-5. Average Occupancy Level of Alleys over the Observation Study Period.  

Note: Pike & Union /1st & 2nd alley shows occupancy level of the alley between 8AM-5PM 

based on one day of data collection. The remaining six alleys show average occupancy level 

based on 3-4 days of data collection. 

 

Vehicle Dwell Time: 68% of all vehicles parked in alleys were there for 15 minutes or less.  

Even more, 87% of vehicles were parked in alleys for 30 minutes or less (see Table 2-4), which 

is the time limit considered by the Seattle Municipal Code. In general, the most frequent alley 

users were truck and cargo vans, at 54% of all recorded vehicles. The second-most-frequent alley 

users were passenger vehicles, at nearly 20%.  

Since six out of the seven alleys were 17 feet wide or less, some of these parking 

operations could be considered as not allowed in the sense that one vehicle could block access to 
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land uses from the alley for several minutes. Preserving alley access function may become 

crucial as some city blocks in downtown Seattle will accommodate new and dense growth. 

Policies should be in place to ensure best practices are followed for alley operations and design 

of access points in alleys for parking garages and loading bays in buildings. 

 

Table 2-4. Dwell time distribution by vehicle types for all seven alleys studied 

Vehicles Type 

No. of 

Vehicles 

Observed  

15 

min 

or less  

15-30 

min  

30min

-1hr  

More 

than 

1hr  

Total share 

of parked 

vehicles  

Trucks and Cargo Vans 229 30.0% 12.6% 6.2% 3.6% 52.4% 

Service Vehicles  31 6.0% 0.9% - 0.2% 7.1% 

General van  42 5.7% 2.5% 0.9% 0.5% 9.6% 

Passenger  86 16.9% 1.8% 0.5% 0.5% 19.7% 

Passenger making a delivery (only when 

logo was visible, or activity was 

observed) 

15 2.8% 0.2% 0.2% 0.2% 3.4% 

Garbage truck 17 3.4% 0.5% - - 3.9% 

Uber/Lyft (only when logo was visible) 1 0.2% - - - 0.2% 

Others  15 1.6% 0.5% 0.7% 0.7% 3.4% 

Unknown  1 0.2% - - - 0.2% 

Total 437 66.8% 19.0% 8.5% 5.7% 100% 

 

2.5 CONCLUSION AND POLICY RECOMMENDATIONS 

There is growing pressure in cities worldwide to find innovative ways to better manage and use 

scarce space. Cities increasingly recognize the potential to incorporate the increase in resources 

provided by functional alleys for environmental, economic and social benefits. As the literature 

review of this research shows that cities have try to unlock te potential of this urban 

infrastructure element using different approaches. Netherlands’ woonerfs or alleys illustrate the 

implementation of shared-street schemes to improve alleys as connectors for pedestrians and 

bicycles. Beijing’s hutongs exemplify the potential of historic alleys to become touristic 

attractions and enhance commercial development. Also, some Canadian cities have recently 

passed zoning regulations to encourage housing density in center city alleys. 
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As we promote connectivity for non-motorized modes in these spaces is essential to 

acknowledge their function of providing access for utilitarian, freight and emergency responses 

vehicles. Despite this important function that many alleys play, our literature review shows that 

alleys have not been the subject of a comprehensive study focused on physical characteristics 

that can preclude the movement of vehicles particularly vehicles providing these services (e.g., 

freight, waste management, service  and fire truck). Additionally, studies related to activities in 

alleys do not capture sufficient data about vehicle operations including type of vehicle and stop 

durations. To address this gap in the understanding of alleys and help communities assess and 

plan alley utilization and management, our research provides with:  

1. A data collection methodology to support an adequate assessment of physical 

attributes that directly impact alley operations and functionality, particularly for freight, 

waste management, and emergency vehicle access. 

2. The demonstration of our alley inventory methodology in Seattle that results in 

the first comprehensive alley inventory in North America with an accurate GIS map of 

the network’s geospatial locations as well as measurements of physical characteristics.  

3. Evidence-based understanding of existing vehicle parking behaviors in alleys 

based on occupancy studies in seven alleys in the Seattle’s densest area. 

 

This research also elaborates recommendations that cites can use to better manage alley 

space and unlock of these infrastructures. As illustrated by Seattle’s alleys, their narrow width 

and location between buildings with multiple access points to parking facilities and pedestrian 

entrances can limit vehicle operations in these spaces. Usage of these spaces by delivery vehicles 

such as box trucks (typically 9.5-foot wide) can lead to blockages of the entire alley for vehicles 

trying to access buildings in the premises or parking in the alley. To avoid unsafe situations 

caused by vehicles backing out of alleys, entering and exiting routes in all one-lane alleys should 

be defined with clearly posted operating rules. 

Cities can use the information provided by a comprehensive scan of physical 

characteristics of urban alleys to make data driven decisions about the most cost-effective freight 

distribution systems for the last mile. Geospatial information of alley restricting dimensions such 

as effective height and width can help to decide between delivery vehicle designs that balance 

maneuverability, size and load capacity. 
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As illustrated by the occupancy study in seven alleys in Seattle’s densest area, these 

spaces can be vacant (without parked vehicles) a significant fraction of the time be typically used 

by up to two parked vehicles simultaneously. There is a potential for alleys to be used as a 

flexible and dynamic space that adapts to different uses and users throughout the day, including 

vehicle accessing land uses, space for load/unload, and nonmotorized modes such as pedestrians 

and bicycles. 

The data quality control plans considered in this research did not include the application 

of validity and reliability scores, future applications of the alley inventory and observation tools 

could consider these scores to add to the robustness of the methodology. 

This research adds evidence that alley networks are a valuable resource as both space for 

freight load/unload; and direct access to parking facilities and business entrances for commercial, 

private, and emergency response vehicles. We encourage future research to investigate how to 

effectively allocate alley space for load/unload, access to buildings and parking facilities and 

other uses. 
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Chapter 3. CURB MANAGEMENT STRATEGIES AND 

RIDEHAILING PICK-UP/DROP-OFF 

OPERATIONS 

This chapter includes a literature review section that discusses recent advancements in the 

analytical capability for curb management evaluation, existing curb management metrics focused 

on time and ridehailing performance, and findings about PUDO dwell time from previous 

studies. Also, this chapter introduces the data sources that will be used in the analysis of PUDO 

dwell time using hazard-based models of Chapter 4 and the curb envirionment evaluation case 

study with simulation of Chapter 5. 

3.1 LITERATURE REVIEW 

3.1.1 Curb Management Evaluation for Ridehailing Vehicles 

In recent years, researchers and practitioners have recognized the rapidly growing complexity of 

curb management, with emerging uses such as MoD services and high competition among all 

road users, and have sought new methods to address the gap in understanding and analytical 

capability for evaluation. 

The lack of curb data and metrics is a challenge that hinders research in this area. To overcome 

this, some authors have used interview-based research for identifying policy problems and 

solutions based on public and private perspectives (Diehl et al., 2021). Another series of studies 

attempted to model different aspects of parking and ridehailing services relying on assumptions 

regarding the performance of ridehailing vehicles to represent real-world operations without 

empirical data. These modeling efforts investigate the provision of waiting areas to reduce empty 

cruising or improve passenger convenience (Beojone & Geroliminis, 2021; Kondor et al., 2020; 

Xu et al., 2017), the reduction of parking demand by passenger cars (Kondor et al., 2020; Su & 

Wang, 2019), and the flexible allocation of curb space (You Kong et al., 2020; Yu & Bayram, 

2021). 

Ridehial modelling efforts applied a macroscopic approach, equilibrium models, and 

numerical experiments to relate parking, ridehailing vehicles, and traffic congestion at an 
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aggregated level. Kondor et al. (2020) used a different approach, based on an integrated, agent-

based simulation modeling framework calibrated to represent Singapore in 2012, and 

investigated the relationship between on-demand vehicle fleet size, empty cruising, and the 

provision of different parking spaces, including waiting areas for pick-ups and spaces for on-

demand vehicles not in service. Alternatively, Kong et al. (2020) introduced a framework at a 

road-intersection level to model competing curbside demands, including through-travel, 

ridehailing PUDO zones, and on-street parking. 

These studies increased understanding of the potential impacts of curb management 

strategies and system dynamics. Xu et al. (2017) evaluated the trade-offs of reducing road 

capacity (and related congestion) to provide parking spaces for vacant ridehailing vehicles to 

reduce empty cruising. Beojone and Geroliminis (2021) also looked into the parking provision 

problem to mitigate empty cruising; they considered a dynamic traffic congestion model and 

smart parking allocation in high demand areas while relating ridehailing vehicle fleet size and 

customers’ willingness to share a ride. 

Another aspect of ridehailing services is the potential reduction in parking demand by 

passenger cars and its impact on the minimum parking supply needed in urban areas. Su and 

Wang (2019) analyzed how parking constraints may lose their power as a travel demand 

management strategy as ridehailing services grow.  

The modeling studies introduced above (both macroscopic and intersection-level 

approaches) have relied on assumptions regarding the performance of ridehailing vehicles to 

represent real-world operations. For instance, Yu and Bayram (2021) built macroscopic 

simulation and optimization models that analyzed the interaction between urban traffic 

congestion and flexible curb uses, including PUDO, loading/unloading of goods, and parking-

only. The durations of both types of parking were assumed to follow a gamma distribution and to 

be shorter for PUDO than for goods loading/unloading. Similarly, Kong et al. (2020) looked into 

competition for curb use among vehicles traveling through the area, PUDO, and on-street 

parking but assumed an exponential distribution for PUDO duration. However, the reliability of 

those assumptions, and the analyses built upon them, were limited by the lack of real-world 

ridehailing vehicle loading and unloading data. 

There are a series of empirical studies or pilots that describe ridehailing PUDO 

operations in the street and make recommendations about the allocation of PUDO zones (City of 
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Fort Lauderdale, 2018; DDOT, 2019; Fehr and Peers, 2019; Lu, 2018; Smith et al., 2019). 

Collectively, these studies have investigated PUDO operation metrics, including dwell times, the 

number of passengers picked up or dropped off, PUDO operations demand and the number of 

simultaneous PUDO operations, double-parking, parking occupancy, business satisfaction with 

PUDO zones, PUDO citations, and curb space productivity (measured as the number of PUDOs 

per unit length-of-curb space per unit of time). however, the effectiveness of current and 

emerging curb management technologies on these PUDO metrics and the inter-modal curb space 

competition have not yet been investigated. Therefore, there is a gap in understanding of the 

factors that impact these operations as an essential part of the analytical capabilities for curb 

management evaluation such as simulation tools. 

 

3.1.2 Time Metrics and Ridehailing Service Performance 

Different time metrics have been considered to evaluate the performance of ridehailing vehicles 

in urban roadways. Wait time refers to the duration until a ridehailing user is picked up by a 

dispatched vehicle after having placed a service request. Inequitable spatial and temporal 

distribution of wait times may be a proxy for lack of access equity (R. Hughes & MacKenzie, 

2016). Uptake time can be defined as the time from a pick-up vehicle’s arrival at the appropriate 

city block to arrival at the curbside. The City of Washington D.C. evaluated an uptake time of  

fewer than 120 seconds on streets with certain traffic flow conditions (DDOT, 2019). 

Dwell time of ridehailing vehicles or private vehicles conducting PUDOs on urban 

roadways is described generally as the duration of the PUDO event (Fehr and Peers, 2019; Smith 

et al., 2019). Lu (2018) defined dwell time more specifically  as the time spent between the 

moment when the vehicle comes to a stop outside the flow of traffic and the moment the vehicle 

moves away from the stop. Alternatively, Galagedera et al. (2014) provided a definition of dwell 

time for PUDO operations in the context of airport curbside: 

“[the] amount of time a vehicle spends parked at a curbside lane (or other passenger loading or 

unloading area). Typically, the dwell time is the length of time between when the driver parks 

(i.e., the vehicle comes to a complete stop) and when the driver first attempts to rejoin the traffic 

stream.” 
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The dwell time metric is particularly relevant to curb management. Research on PUDO 

zone requirements at airport passenger terminals has related the capacity of these facilities to 

both the number of vehicles that can be accommodated while at a stop conducting PUDOs and 

the number of vehicles that can be accommodated traveling past the curbside zone using the 

adjacent through-lanes (Galagedera et al., 2014; National Academies of Sciences, Engineering, 

and Medicine, 2010). Dwell time is a factor of the utilization of these facilities, and 

consequently, it is necessary to determine whether spare capacity is available to serve additional 

demand and surges in demand. 

Clearly defining the different processes of a PUDO operation that compose its dwell time 

is required to investigate the critical stochastic factors that affect PUDO zone capacity, develop a 

standardized service performance metric, and compare results among studies. Good examples are 

studies of transit vehicle dwell time related to transit capacity and design, which have been 

modeling this metric for decades to address transit reliability, stop design, and route scheduling, 

among other topics (AlHadidi & Rakha, 2019; National Academies of Sciences, 2013). 

Heterogeneity in dwell time also relates to parking time limits, which can be a valuable tool for 

increasing turnover and reducing excess demand by diverging longer-duration users if used 

appropriately, or can lead to unintended consequences if not (Arnott & Rowse, 2013). PUDO 

zones that have been part of pilot tests to address ridehailing vehicle demand in urban roadways 

have also had time restrictions. Some recent examples set this limit to 1 and 5 minutes in 

Washington, D.C., and Fort Lauderdale, Texas, respectively (City of Fort Lauderdale, 2018; 

DDOT, 2019).  

 

3.1.3 Previous Findings on Urban PUDO Zone Ridehailing Dwell Time 

 A handful of studies have investigated the dwell times of ridehailing vehicles in urban road 

settings based on real-world data. The ten locations considered in these studies in three different 

cities are summarized in Table 3-1 and represent a mix of land-use, neighborhood, and roadway 

characteristics, including four arterials and six local streets, of which three were one-way streets. 

Different time of day periods were considered among the studies, including the AM and PM 

peaks of the adjacent road, special events during weekdays and weekends, and periods with 

significant nightlife activity on weekends. 
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The first set of five locations was from a study in San Francisco by a consultant, which 

observed 586 ridehailing vehicles conducting PUDO operations during AM and PM peaks 

(Smith et al., 2019). PUDO operation data by multiple vehicle types, including ridehailing 

vehicles, buses, commercial vehicles, taxis, private vehicles, and shuttles, were obtained from 

video camera recordings. Another study by Lu (2018) documented 2,241 ridehailing PUDO 

operations in two locations of Los Angeles, Calif., during periods of nightlife activity on 

weekends and using a manual data collection approach. 

Last, a study by a consultant collected data about ridehailing activities in three locations 

in Cincinnati, Ohio (Fehr and Peers, 2019). In this case, the study focused on capturing 

differences in PUDO operations before and after special events, including a theater show, a 

baseball game, and a road segment’s temporal closure to create a pedestrian area for nightlife 

activities. Data on 228 PUDO operations were recorded with video camaras, but the authors 

could not distinguish between ridehailing vehicles and private cars. 

Figure 1 shows the average dwell time values of PUDO operations reported by the three 

studies described above, which ranged between approximately 15 and 100 seconds. Although 

strictly descriptive, the dwell time statistics and anecdotal evidence from those efforts indicated 

factors that may play a role in causing variance in dwell times. These factors can be categorized 

into four categories: location, passenger movements, operations management, and traffic. 

• Location: Ideally, PUDO operations take place at the curbside in zones allocated for this 

use. However, drivers have been observed engaging in non-compliant behaviors, 

including double-parking (in-street) and serving passengers at the curbside where no 

stopping is allowed for picking up and dropping off passengers. These noncompliant 

behaviors have tended to last for shorter durations than compliant curbside operations. 

Dwell times at the curbside versus the street were reported for ten study locations, of 

which seven showed lower dwell times for vehicles stopping in the street (see Figure 

3-1). Additionally, Lu (2018) reported lower dwell times for ridehailing vehicles using 

curbside zones reserved for transit vehicles than in PUDO zones. 

• Passenger Maneuvers: The number of passengers in a PUDO operation will impact the 

total dwell time, and pick-ups and drop-offs may have different durations. For instance, 

for picking-up passengers, drivers are likely to wait for passengers to locate and approach 

the vehicle, while this step is skipped during drop-offs. Anecdotal evidence has shown 
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shorter dwell times before special events, such as theater shows and sport matches, when 

activity has been predominantly drop-offs instead of after events with a prevalence of 

pick-ups (Fehr and Peers, 2019). Another passenger maneuver that may drive longer 

dwell times is the time spent assisting passengers with luggage. 

• Operations Management: Methods of managing the assignment of passengers and 

drivers based on a set of criteria, such as first-come/first-serve, and the location of the 

operation, such as geofencing, may impact dwell time. In May 2019, Lyft and Uber 

announced pilot operations at the Portland International Airport (PDX) to reduce driver 

and passenger wait times. The new system connects riders with their drivers more quickly 

by using a personal identification number (PIN). Travelers request a ridehailing, receive a 

one-time code, and enter the line at the pick-up location. When they reach the front of the 

line, they show their code to the driver and, upon validation, start the trip (Port of 

Portland, n.d.-a). 

• Traffic: Congestion in the adjacent through-lane and in the PUDO zone may make 

drivers less likely to find a space in oncoming traffic and therefore may increase their 

difficulty in merging back into traffic. 

3.1.4 Summary 

PUDO dwell time is a metric required for adequate PUDO zone capacity estimation. 

Furthermore, understanding the heterogeneity of dwell time is necessary for correctly assessing 

the outcomes of curb management strategies such as parking time limits. A handful of studies 

have documented the dwell times of ridehailing vehicles based on real-world data. However, this 

critical operational metric remains largely understudied in comparison to research on transit 

vehicle operations, which have modeled dwell times for decades. Ongoing research efforts aim 

to create modeling approaches to accommodate the growing complexity of demands for curbside 

space and provide guidance and solutions to infrastructure managers and policy makers. 

However, the lack of an adequate parametrization of dwell time, and understanding of the 

effectiveness of current and emerging curb management technologies on curb management 

metrics hinders the potential of these efforts. An adequate parametrization of PUDO dwell time 

should consider factors of dwell time variance, including at least location, passenger maneuvers, 

operations management, and traffic. 
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Table 3-1. Summary of Empirical Studies of Ridehailing PUDOs 

Location 
Observed Time 

Period 
Road Characteristics Adjacent Land Use 

Sample Size 

(ridehailing 

vehicles) * 

Reference 

Clay Street, San 

Francisco 

PM commuter peak 

of a typical weekday 

Multi-lane one-way street representing 

a downtown corridor Offices and hotels 57 
(Smith et al., 

2019) 

Hayes Street, San 

Francisco 

PM commuter peak 

of a typical weekday 

Two-lane commercial corridor with 

moderate pedestrian and bus activity  

Commercial corridor with retail and 

medium-density residential 
29 

(Smith et al., 

2019) 

Polk Street, San 

Francisco 

PM commuter peak 

of a typical weekday 

Three-lane downtown commercial 

street with bike lanes and curb parking 

lane on both sides.  

Commercial corridor with medium-

density residential and close to Civic 

Center 

78 
(Smith et al., 

2019) 

Second Street, San 

Francisco 

AM Peak and PM 

Peak commuter 

peaks of a typical 

weekday 

Four-lane downtown commercial street High-density office 58 
(Smith et al., 

2019) 

Townsend Street, 

San Francisco 

AM Peak and PM 

Peak commuter 

peaks of a typical 

weekday 

Two-lane arterial road with bike lanes 

on both sides 

Major transit center, the 4th/King 

Caltrain station 
364 

(Smith et al., 

2019) 

Melrose Street, Los 

Angeles 

Nightlife during 

weekend nights 

Four-lane arterial corridor with curb 

parking lane on both sides Restaurants, bars and retail 174 (Lu, 2018) 

Santa Monica Street, 

Los Angeles 

Nightlife during 

weekend nights 

Four-lane arterial corridor  
Restaurants, bars and retail 2,067 (Lu, 2018) 

Aronoff Center of 

the Arts, Cincinnati 

Before-after special 

events on weekend 

nights 

Walnut Street, a two-lane one-way 

street with parallel curbside parking on 

both sides. Streetcar runs on rail tracks 

in the center travel lane. 

Restaurants, hotel, Aronoff Center of 

the Arts (theater) and governmental 
57** 

(Fehr and 

Peers, 2019) 

Freedom Way, 

Cincinnati 

Nightlife during 

weekend night 

Three-lane, two-way road with 

curbside parking lanes on both sides 

Restaurants, bars, park, apartment 

buildings 

69** (Fehr and 

Peers, 2019) 

Great American Ball 

Park, Cincinnati 

Before-after special 

events on weekday 

and weekend 

Second Street, five-lane, one-way 

street with a transit-only lane for buses 

and streetcar. One of the travel lanes is 

used as taxi loading zone after games 

Great American Ball Park (stadium), 

restaurants and bars 

102** 

(Fehr and 

Peers, 2019) 

Notes: *Ridehailing vehicles conducting PUDOs, unless otherwise noted. **Includes private and ridehailing vehicles alike conducting 

PUDOs 
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Figure 3-1 Average Dwell Time of Ridehailing PUDOS in Multiple Studies 

Notes: Locations Aronoff Center, Great American Ball Park and Freedom Way show average 

dwell time of private and ridehailing vehicles without distinction between the two types. BE: 

before event. AE: After event. 

 

3.2 DATA SOURCES 

Three types of data were used in this dissertation research: vehicle stop events, off-street parking 

garage occupancy, and traffic volume and speed. The data sets were obtained from a previous 

study by Ranjbari et al. (2020) that evaluated two curb management strategies in Seattle, Wash., 

in an area where large numbers of workers commute using ridehailing services. The strategies 

were 1) a curb allocation change from paid parking to PUDO zones, and 2) a geofencing 

approach by ridehailing companies that directed their drivers and passengers to designated 

PUDO zones on a block. 
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3.2.1 Study Area 

The study area included three block faces in a segment of Boren Ave N, a local two-way street 

with one travel lane and one on-street parking lane in each direction (see Figure 3-3). The street 

was in South Lake Union, a rapidly growing neighborhood adjacent to downtown Seattle, with 

predominantly mixed-use land including offices, retail, mixed-used commercial, and mixed-use 

residential (SDCI, 2017). After downtown Seattle, South Lake Union is the city’s second-ranked 

neighborhood in order of employment density, with 2.7 jobs per 1,000 square feet.  

The segment of Boren Ave N was observed during the AM and PM peak activity periods 

(8:00-10:00 AM and 2:00-6:00 PM, respectively), five weekdays per week during three different 

weeks (or study phases) between December 2018 and early January 2019. During the 

observation periods, the street showed an average hourly traffic volume of 155 to 370 vehicles 

and an average traffic speed of 12 to 14 mph. Vehicles conducting passenger pick-ups or drop-

offs represented 18 to 37 percent of hourly traffic volume (Ranjbari et al., 2020). 

 

3.2.2 Existing Curb Space Allocation 

The studied three block faces included 1,090 linear feet of curb, out of which 530 feet were 

considered no parking/tow-away zones. The remaining 560 feet were allocated to different 

usages, which could vary during the time of day and day of the week. During the studied 

weekday AM and PM activity periods (8:00-10:00 AM and 2:00-6:00 PM), curb space was 

allocated to four main usage types, including 2-hour paid parking, PUDO zones, commercial 

vehicle load zones, and charter bus/shuttle bus/taxi load zones. Before any curb management 

strategy had been implemented as part of our research, the existing allocation of curb space in 

the observed block faces included the following types of usage during the AM and PM activity 

periods: 

• 2-hour paid parking (450 feet) 

• PUDO zones (20 feet) 

• Commercial vehicle load zones (40 feet) 

• Charter bus / Shuttle bus / taxi load zones (50 feet). 

Out of the periods of high activity (and our periods of observation), several spaces for dedicated 

2-hour paid parking turned into food truck zones between 10:00 AM and 2:00 PM. Figure 3-3 
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shows the locations of the observed block faces on Boren Ave N, and Table 3-2 describes the 

allocation of curb uses in each of these block faces. 

3.2.3 Study Phases and Curb Allocation Changes 

Data were collected in three different phases: 

• Phase I: Baseline. This phase refers to the state of curb management before any strategy 

was implemented or changes of curb allocation were made. In the baseline, the existing 

allocation of curb space to PUDO zones was 20 feet. 

• Phase II: Added PUDO zones. New PUDO signs were replaced paid parking. As a 

result, the curb length dedicated to PUDO zones was extended from 20 feet to 

approximately 270 feet, 14 times more PUDO space. 

• Phase III: Added PUDO zones + geofencing. With the same allocation of PUDO space 

as in Phase II, operations by Uber and Lyft were geofenced at the existing PUDO zones. 

Ridehailing trip requests within a two- block distance from the PUDO zones were 

directed to these curb spaces. 

 

To allow users to get accustomed to the new street conditions, data were not collected until at 

least one week after implementation of the curb allocation changes of phases II and III. 

Additionally, the street strategy changes appeared to road users as permanent changes. First, the 

new PUDO signs and curb paint followed the city’s signage design standards, and they were 

identical to other PUDO signs in the city (locally called Passenger Load Zones). Second, the 

ridehailing mobile apps seamlessly integrated geofencing, and the trip request process looked 

similar to other locations with geofencing, such as the local Seattle-Tacoma airport. 
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Figure 3-2. Segment of Boren Ave N between Harrison St and Thomas St. 

 

 

3.2.4 Data Sets 

The data sets used included the following: 

The vehicle stop event database included a total of 8,063 stop events recorded with video 

cameras and documented individually. The events were broken down into the following types: 

• 2,827 passenger loads: A vehicle entered the study area to stop and pick up passenger(s) 

different than the driver. 

• 3,197 passenger unloads: A vehicle entered the study area to stop and drop off 

passenger(s) different than the driver. 

• 929 parking operations: After the vehicle stopped, the driver exited the vehicle and left 

it parked. 

• 148 un-parking operations: The driver entered a parked vehicle and moved away. 

• 962 unidentified operations: Vehicle stop events for which there was not enough 

information from the video to classify them further. For instance, some cases involved a 

vehicle stop but neither the driver nor other passenger entered or exited the vehicle.  
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The aim of this study was to develop a predictive model of stop durations by passenger vehicles 

loading or unloading passengers. Therefore, model calibration was based on the subset of 6,024 

passenger load/unload events. 

The off-street parking garage occupancy database included occupancy in 5-minute 

intervals during the study period at three off-street parking garages managed by Amazon in the 

study area. The locations of the entrances and exits of the parking garages are shown in Figure 

3-3. 

The traffic volume and speed database included vehicle counts and average point speeds 

measured with two tube counters. Data were collected in 5-minute intervals during the study 

period. The tube counters were placed midblock on the two studied segments of Boren Ave N 

(see Figure 3-3Figure 3-3). 
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Figure 3-3 Study area and data collection details 

 

Table 3-2 Curb space allocation per blockface during weekday AM and PM activity periods 

and Phase I (Baseline) of study. 

Blockface* 
Paid Parking 

(feet) 

PUDO Zone 

(feet) 

Commercial Vehicle 

Load Zone (feet) 

Charter Bus / Shuttle 

Bus / Taxi Load Zones 

(feet) 

A 200 20 0 0 

B 95 0 40 0 

C 155 0 0 50 

Total 450 20 40 50 

*Figure 3-3 represents the locations of blockfaces on Boren Ave N.   
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Chapter 4. HAZARD-BASED MODELING OF PUDO DWELL TIME: 

A NATURALISTIC ANALYSIS 

This chapter describes our research on hazard-based modeling of PUDO dwell time with 

naturalistic data described in Chapter 3. 

 

4.1 METHODOLOGY 

The modeled phenomenon was the end of the stopping operation of a vehicle that loads or 

unloads passengers (i.e., the event). Therefore, the duration of the event (i.e., survival time) is 

defined as the time that the vehicle remains stopped. Hazard-based duration modeling deals with 

the statistical representation of time to event data and  has  methodological and conceptual 

advantages over the more traditional regression methods (Bhat & Pinjari, 2007).  

Hazard-based models have been used extensively for several decades in biostatistics and 

industrial engineering to examine issues such as the effects of chronic diseases on life 

expectancy and the time mechanical components take to fail under various conditions. Time to 

event data are frequently used in transportation problems; recent examples of the application of 

hazard-based models to such transportation data include the investigation of the stop durations of 

commercial vehicles picking up and delivering urban goods (S. Hughes et al., 2019; Sharman et 

al., 2012), flight departure delays (Kim & Bae, 2021), drivers’ braking time performance (Yadav 

& Velaga, 2021), the time to complete an overtake (Bella & Gulisano, 2020), the time to 

complete vehicle ownership transactions (Khan & Habib, 2021), and disruption durations for 

subway systems (Louie et al., 2017). 

Hensher and Mannering (1994) and Bhat (2000) provided extensive reviews on the 

application of hazard-based duration models to transportation problems. Moreover, Washington 

et al. (2020) discussed methodological, computational, and estimation issues in transportation 

duration modeling. 
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4.1.1 Mathematical Formulation 

Let T be a non-negative random variable representing the duration time of an individual, in this 

case, the stop event of a vehicle loading/unloading passengers. Following Ettema et al. (1995), 

we explain the most important equations of the hazard-based duration modeling framework. We 

will assume that T is an unconditional distribution of durations with probability density function 

f(t) and cumulative distribution function F(t) = Pr{T < t}, giving the probability that the event 

has occurred by duration t. 

An essential function in hazard modeling is the survivor function S(t), giving the 

probability that the process has survived until t: 

 

𝑆(𝑡) = 1 − 𝐹(𝑡) = 𝑃(𝑇 ≥ 𝑡) =  ∫ 𝑓(𝑢)𝑑𝑢
∞

𝑡
   (4.1) 

 

The hazard function h(t) describes the probability of occurrence at t conditional on survival until 

t: 

 

ℎ(𝑡) = lim
∆𝑡→0

P(𝑡≤𝑇<𝑡+∆𝑡|𝑇>𝑡)

ℎ
=

𝑓(𝑡)

𝑆(𝑡)
   (4.2) 

 

The cumulative hazard function Ʌ(t) and survival functions are related as follows: 

Ʌ(𝑡) =  ∫ ℎ(𝑢)𝑑𝑢
𝑡

0
= −𝐿𝑜𝑔 𝑆(𝑡)   (4.3) 

 

The shape of the hazard function is determined by the distributional assumptions made for the 

probability density function f(t). For a detailed review of possible distributions, the reader is 

referred to Lawless (2002). Initial tests were conducted with no explanatory variables to 

determine a suitable baseline function. The Weibull, normal, logistic, lognormal, and log logistic 

distributions were all tested, and the log logistic distribution was found to provide the best fit to 

the data. Test results are shown in the Results section below. The hazard, cumulative hazard, and 

survival functions related to the log logistic distribution are as follows (Lawless, 2002). 
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ℎ(𝑡) =
𝜆𝛽(𝜆𝑡)𝛽−1

1+(𝜆𝑡)𝛽    (4.4) 

 

Ʌ(𝑡) =  
𝜆𝛽(𝜆𝑡)𝛽

1+(𝜆𝑡)𝛽   (4.5) 

 

𝑆(𝑡) =
1

1+(𝜆𝑡)𝛽
   (4.6) 

 

where α > 0, β > 0 and t > 0.  

 

4.1.2 Effects of Covariates 

Individual cases in the sample of passenger load/unload events may show heterogeneity in 

duration that can be explained by factors such as the number of passengers loaded or unloaded, 

time of day, or whether the location occurs in the middle of the street or at the curb. Two primary 

types of models allow for incorporating such factors as covariates (i.e., explanatory variables): 1) 

proportional hazard (PH) model and 2) accelerated failure-time (AFT) models.  

In the proportional hazard model, the covariates act multiplicatively on the baseline 

hazard (see equation 4.4). This leads to the property of proportionality, implying that the ratio of 

hazards for specific sets of covariates (h1/ h2) remains constant over time. In other words, there is 

no duration dependence or dynamics, and the conditional probability of the vehicle ending the 

stop is not related to the time elapsed since the vehicle stopped. 

 

ℎ(𝑡|𝑋) = ℎ0(𝑡)𝑔(𝑋)   (4.7) 

 

where 

X = a vector of explanatory variables and 

ho(t) = the baseline hazard function if all covariates X have a value of 0 

g(X) = nonnegative function related to covariates; for mathematical convenience, it is 

usually defined as exp(−𝑋𝛼), where 𝛼 is a vector of parameters. 
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In the proportional hazards model, changes in covariates shift the baseline hazard 

function up or down, resulting in individuals with hazard functions that are constant multiples of 

one another. However, this characteristic may be undesired for our data. For instance, an 

increasing number of passengers being loaded and unloaded may have a smaller effect (hazard 

ratio) 5 seconds into the duration of a stop than at 60 seconds.  

 

AFT models, on the other hand, are log linear for T, 𝑙𝑜𝑔 𝑇 =  𝑋𝛼 + 𝜀, and the effect of 

the covariates X is on time rather than on the baseline hazard. That is, covariates accelerate (or 

decelerate) time in the baseline hazard function, shifting the hazard distribution left or right by a 

constant amount. The direct physical interpretation of the effect of covariates in this model fits 

our data well. For instance, an increasing number of passengers being loaded/unloaded will slow 

the entering and exiting of vehicles and ending their operations. Similarly, stops in the travel lane 

may be quicker because such unauthorized and unsafe behaviors risk a parking violation ticket 

and potential harm. Thus, AFT models offer greater flexibility in modeling durations of 

alternative processes, and the hazard function can be shown to be: 

 

 

ℎ(𝑡|𝑋) = ℎ0(𝑡𝑒−𝑋𝛼)𝑒−𝑋𝛼   (4.8) 

 

4.1.3 Parametric and Semi-Parametric Hazard Models 

Models that make distributional assumptions about the shape of the hazard function are referred 

to as parametric, and their primary limitation is that they may inconsistently estimate the baseline 

hazard if the assumed parametric form is incorrect. This limitation can be overcome by using 

approaches that do not require parametric hazard-distribution restrictions.  

The partial likelihood approach introduced by Cox  (1972) does not require the 

specification of the hazard function because it estimates only the covariate effects, and it does 

not estimate the hazard distribution itself. The application of the partial likelihood method and a 

PH form to accommodate the effect of covariates is referred to as the Cox PH model and has 

been widely used. The Cox PH model can be considered a semi-parametric hazard model 

because the PH form in which regressors are related to the hazard is fully parametric. 
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4.1.4 Unobserved Heterogeneity 

In practice, it is rarely possible to include all relevant covariates in the model formulation. The 

omitted covariates may account for unobserved heterogeneity; individuals with the same value of 

observed covariates may have different distributions. The effects of not accounting for 

unobserved heterogeneity can include significantly misleading inferences, including a downward 

biased estimate of duration dependence and a bias toward zero for the effect of external 

covariates (Balan & Putter, 2020; Bhat & Pinjari, 2007). 

The literature in demographic research uses the term frailty to refer to unobserved 

heterogeneity on lifetimes collectively. One standard way of including heterogeneity is to use an 

observed individual random effect that acts multiplicatively on the hazard, and the estimated 

variance of this random effect is an indication of the unobserved heterogeneity (Balan & Putter, 

2020). In the PH specification, heterogeneity is introduced as follows: 

 

ℎ(𝑡|𝑋) = ℎ0(𝑡)𝑒−𝛽′𝑥+𝑤   (4.9) 

 

where w represents unobserved heterogeneity. This formulation involves the specification of a 

distribution for w across individuals in the population, which can be a parametric or 

nonparametric specification. The AFT model cannot incorporate unobserved heterogeneity 

because of identification problems (Bhat & Pinjari, 2007). 

 

4.1.5 Log Likelihood Estimation 

We used a maximum likelihood approach to estimate model parameters. For a parametric hazard 

distribution in the presence of right censoring, the maximum likelihood function can be written 

in terms of the survival and hazard functions as follows (Rodríguez, 2007): 

𝐿 = ∏ 𝐿𝑖𝑛
𝑖=1 = ∏ ℎ(𝑡𝑖)

𝑑𝑖
𝑖 𝑆(𝑡𝑖)   (4.10) 

 

where di, is a censoring indicator, taking the value of one if vehicle i exits the stop duration and 

the value of zero otherwise.  
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Taking logs and using the relationship between the survival function S(t) and the cumulative 

hazard function, Ʌ(t) in the log-likelihood function for censored survival times can be 

demonstrated to be: 

 

log 𝐿 = ∑ {𝑑𝑖 log ℎ(𝑡𝑖) − Ʌ(𝑡𝑖)}𝑛
𝑖=1    (4.11)  

 

The authors refer the reader to Bhat (2007) and Balan and Putter (2020) for a detailed discussion 

of the estimation and formulation of the Cox partial likelihood method and unobserved 

heterogeneity. 

 

4.1.6 Dependent Variable and Covariates 

The variables used in this study were related to the different data sets introduced above, 

including the vehicle stop events, off-street parking garage occupancy, and traffic volume and 

speed counts. All the variables used in the analysis were obtained from the data sets (see Section 

3.2.4)either directly or indirectly after data processing. For instance, the three data sets were 

merged to relate stop events to traffic and off-street parking garage conditions. Another data 

transformation was required to estimate the number of vehicles stopped at the curb at any time 

based on their arrival time and stop duration. Last, all the covariates used in the analysis were 

assumed to be time-invariant in the duration of the stop events. 
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4.2 RESULTS 

An analysis of the data showed that only 1 percent of the stops had a duration of more than 17 

minutes. Right censoring was applied to the data when the parametric model was estimated 

because of the small number of long duration stops. Furthermore, including longer stops could 

reduce the quality and applicability of the estimated model.  

 

4.2.1 Descriptive Analysis 

 

Table 4-1 and Table 4-2 show all the variables used in the analysis, including a written 

description and descriptive statistics. 

 

Table 4-1 Description of categorical variables 

Variable Description Levels Count Percentage 

Type of 

Event 

Type of stop event; passenger loads were 

set as the reference level 

Passenger load 2,827 46.9 

Passenger unload 3,197 53.1 

Phase 
Phase of research design; Phase I was set 

as the reference level 

I 1,558 25.9 

II 1,967 32.7 

III 2,499 41.5 

Location 
Location of stop event; the curb was set 

as the reference level 

Curb 3,706 61.5 

Street 2,318 38.5 

Type of 

Vehicle 

Type of vehicle; passenger vehicles were 

set as the reference level. Ridehailing 

vehicles were identified as such based on 

visible stickers on the vehicle and/or if 

the operation involved passenger(s) 

entering/exiting a Toyota Prius through 

the back door 

Passenger 2,336 38.8 

Large passenger 36 0.6 

Taxi 33 0.6 

Ridehailing 3,619 60.1 

Period 
Time of day period; the afternoon was set 

as the reference level 

Afternoon 3,132 52.0 

Morning 2,892 48.0 

Trunk 

Access 
Access of the vehicle trunk 

No 5,567 92.4 

Yes 456 7.6 

Unknown 1 0.0 
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Table 4-2 Description of continuous and discrete variables 

Variable Description Mean Min. Q1 Q2 Q3 Max. 

Dwell Time 

Dependent variable; stop 

duration of vehicles that 

loaded/unloaded passengers; 

measured in minutes. 

1.21 0.03 0.22 0.38 0.92 17.00 

Number of 

Individuals 

Number of individuals being 

loaded or unloaded 
1.15 1.00 1.00 1.00 1.00 13.00 

On-Street 

Parking 

Occupancy 

Rate 

Number of vehicles stopped at 

the block face curb lane adjacent 

to the vehicle stop location at the 

start time of the stop event. 

3.28 1.00 2.00 3.00 4.00 10.00 

Traffic 

Volume 

5-minute traffic volume counts 

on the travel lane adjacent to the 

vehicle stop location and nearest 

to its start time; measured in 

number of vehicles per 5 

minutes. 

6.93 0.00 4.00 6.00 9.00 31.00 

Mean 

Speed 

Average traffic speed measured 

in miles per hour on the travel 

lane adjacent to the vehicle stop 

location; average was based on 

5-minute vehicle counts in speed 

bins from pneumatic tube 

counters placed midblock on the 

observed segments of Boren Ave 

N. The 5-minute interval closest 

to the start time of the vehicle 

stop event was selected.  

11.88 0.00 10.17 12.12 14.00 27.50 

Off-Street 

Parking 

Occupancy 

5-minute average occupancy as a 

percentage at the three off-street 

parking garages in the study 

area.  

0.60 0.16 0.46 0.60 0.73 0.98 

 

4.2.2 Baseline Hazard Distribution 

Under the specification of zero covariates, we tested four types of hazard distributions, namely 

Weibull, normal, logistic, lognormal, and log logistic, to find the best fit for PUDO dwell time 

data. The survival curves with different distributions are graphically shown in Figure 4-1. The 

estimation of these models uses maximum likelihood; therefore, we compared the log-

likelihoods and AIC statistic of each model (see Table 4-3). 
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 The log logistic distribution had the largest value of log likelihood and the smallest AIC, 

which indicated that it fit best to the hazard pattern. Several different model forms were also 

considered to assess the final model with covariates. In addition to the selected log-logistic 

model, we considered Weibull, log-normal, and logistic models with the complete set of 

covariates. The log-normal model was very similar to the log-logistic in terms of coefficients and 

standard errors. The log-logistic model’s log-likelihood was greater than that of the log-normal, 

indicating the best fit. The other model forms (Weibull and logistic) showed greater standard 

errors and the worst fit in terms of log-likelihood. For all these reasons, we considered the log-

logistic distribution to be superior for our data. 

 

Table 4-3 Comparison of fitness of parametric distributions 

 Weibull Normal Logistic Lognormal Log logistic 

Log-Likelihood -6436.39 -14123.6 -11722.6 -5140.93 -5036.29 

AIC 12876.77 28251.18 23449.18 10285.87 10076.57 

 

 
Figure 4-1 Comparison of empirical and parametric cumulative distribution functions of stop 

duration time  
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4.2.3 Model Results 

Vehicle stop duration data were fit with different survival models, including a fixed effect AFT 

and Cox PH models, and a random effects Cox PH model. Stepwise model selection by AIC was 

used to select the appropriate variables to include in the models. The models were calibrated by 

using the survreg(), coxph(), coxme() and stepAIC() functions of the R-statistics software. Table 

4-4 shows the models’ parameters, their significance, and the models’ goodness-of-fit statistics. 

As described in Section 4.1.2, the AFT formulation was preferred because the direct 

physical interpretation of its covariate effects fit our system well, and the proportional hazard 

assumption might not hold in the case of passenger load/unload events. A test confirmed this by 

rejecting the proportional hazard assumption for the Fixed Effect Cox PH based on Schoenfeld 

residuals (Grambsch & Therneau, 1994) implemented in the cox.zph() function in the R-statistics 

software. For the Random Effects PH Cox model, gamma and gaussian frailty term distributions 

were considered. The gamma distribution was preferred because of better overall fit evidenced 

by a likelihood test (-42,275 > -42,778). The Random Effects Cox PH model showed a 

significantly better overall fit than the Fixed Effects Cox PH model based on a likelihood ratio 

test. However, this evidence in favor of the frailty model was not conclusive because 

nonproportionality could be confounded with unobserved heterogeneity in the univariate survival 

model with small clusters (Balan & Putter, 2019). 

Although not directly comparable, the Fixed Effects AFT model showed better goodness-

of-fit than the semi-parametric PH Cox models based on loglikelihood estimates. Unobserved 

heterogeneity, if significant, might lead to a marginal interpretation of the coefficient estimates, 

in the sense that they were averaged over all unmeasured covariates. Therefore, the estimated 

regression coefficients applied to an individual selected randomly from the population (Balan & 

Putter, 2020). For all these reasons, the Fixed Effects AFT model was considered the superior 

model, and it is the focus of the remaining discussion.  

Because of the different model specifications, the parameter estimates had different 

interpretations between the AFT and PH models. For the AFT models, a positive coefficient 

meant that this parameter increased the stop duration. For the PH model, a positive coefficient 

meant that the parameter increased the hazard, reducing the stop duration. 

In the AFT framework, the exponential of the estimated coefficient is called the 

accelerated factor (AF), which measures, for each variable, the increased survival time (stop 
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duration) associated with an increase in the value of that variable. For example, the exponential 

of Type of Event: Passenger Unload, a negative coefficient, was 0.63; therefore, the vehicle stop 

duration was about 0.63 times (or equivalently 37 percent shorter) when a vehicle unloaded 

passengers than when loading them, keeping all the other variables at a constant. 

It is worth noting that different model formulations were calibrated to assess cross-

correlation between some of the covariates. We concluded that no correlation was present 

between Traffic volume and Mean speed. This has a logical explanation, given that Boren Ave N 

was a local street representing a heavily multimodal urban environment with low speed limits. 

The Mean speed variable was later excluded from the models based on stepwise model 

calibration. In addition, we analyzed the relationship between On-street parking occupancy and 

Location and concluded that the best model formulation controlled separately for both variables 

to avoid omitted variable bias.  

The following provides a description of the remaining effects of the AFT model that were 

statistically significant at a 1 percent level: 

• Number of Individuals: One additional passenger being loaded or unloaded made the 

stop duration approximately 22 percent longer. 

• Trunk Access: If the vehicle trunk was accessed, stops lasted 84 percent longer. 

• Traffic Volume: Stop duration was 1 percent shorter with one additional vehicle 

traveling through the travel lane adjacent to the stop location. 

• On-Street Parking Occupancy: Stop duration was about 3 percent longer with one 

additional vehicle parked on-street. 

• Location: Stops were about 54 percent shorter when they occurred in the travel lane than 

when they happened at the curb.  

• Period: In comparison to the afternoon period, stops happening in the morning were 

approximately 22 percent shorter. 

• Vehicle Type: In comparison to passenger vehicles, ridehailing stops were approximately 

42 percent shorter. On the other hand, stops by taxis and large passenger vehicles were 81 

percent and 131 percent longer. 
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Last, the variables describing the effects of curb management strategies suggested different 

effects on PUDO dwell time: 

• Phase II: Added PUDO Zones showed a non-statistically significant positive effect of 

increasing durations when new PUDO spaces were added in comparison to the Phase 1 

baseline. 

• Phase III: Added PUDO Zones + geofencing produced a statistically significant 

negative coefficient, indicating that stop durations were shorter during Phase 3 than in the 

baseline. 

• Phase – Location interaction term showed a statistically significant positive coefficient 

for Phase III – Street, indicating that adding PUDO zones with geofencing may have 

reduced PUDO dwell times for events that occurred at the curb. 
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Table 4-4 Results of AFT and PH models 

  Fixed Effects AFT Fixed Effects Cox PH Random Effects Cox PH 

Variable Coef. 𝒆𝒄𝒐𝒆𝒇 
Std. 

Error 
P-value Coef. 𝒆𝒄𝒐𝒆𝒇 

Std. 

Error 
P-value Coef. 𝒆𝒄𝒐𝒆𝒇 

Std. 

Error 

P-

value 

Event Type (Ref: Load) 
Passenger 

Unload 
-0.460 0.631 0.042 0.001* 0.447 1.563 0.045 0.001* 0.719 2.052 0.07 0.001* 

Phase (Ref: I) 
II 0.077 1.080 0.043 0.071 -0.032 0.969 0.047 0.492 -0.096 0.909 0.067 0.156 

III -0.110 0.896 0.040 0.007 0.154 1.167 0.045 0.001* 0.139 1.150 0.064 0.030 

Location (Ref: Curb) Street -0.783 0.457 0.045 0.001* 0.975 2.652 0.052 0.001* 1.391 4.018 0.076 0.001* 

Number of Individuals  0.203 1.225 0.023 0.001* -0.191 0.826 0.029 0.001* -0.326 0.722 0.039 0.001* 

Vehicle Type 

(Ref:Passenger) 

Large Passenger 0.836 2.308 0.209 0.001* -0.853 0.426 0.185 0.001* -1.272 0.28 0.284 0.001* 

Taxi 0.593 1.809 0.154 0.001* -0.495 0.609 0.177 0.005 -0.877 0.416 0.246 0.001* 

Ridehailing -0.543 0.581 0.024 0.001* 0.590 1.803 0.028 0.001* 0.866 2.378 0.041 0.001* 

Traffic Volume  -0.010 0.99 0.003 0.001* 0.006 1.006 0.003 0.065 0.019 1.019 0.005 0.001* 

On-Street Parking 

Occupancy 
 0.029 1.030 0.007 0.001* -0.022 0.978 0.008 0.007 -0.044 0.957 0.012 0.001* 

Off-Street Parking 

Occupancy Rate 
 -0.130 0.878 0.072 0.069 -0.058 0.943 0.083 0.480 0.202 1.224 0.117 0.084 

Trunk Access (Ref: No) Yes 0.608 1.836 0.042 0.001* -0.521 0.594 0.050 0.001* -0.906 0.404 0.068 0.001* 

Period (Ref: Afternoon) Morning -0.250 0.779 0.044 0.001* 0.297 1.346 0.048 0.001* 0.468 1.597 0.073 0.001* 

Phase*Location (Ref: 

Phase 1 – Street) 

Phase 2 – Street -0.061 0.941 0.060 0.310 -0.020 0.980 0.069 0.769 0.069 1.071 0.100 0.489 

Phase 3 – Street 0.175 1.191 0.057 0.002 -0.272 0.762 0.067 0.001* -0.257 0.774 0.096 0.008 

(Intercept)  0.012 1.012 0.071 0.866 - - - - - - - - 

Log(scale)  -0.682 0.505 0.011 0.001* - - - - - - - - 

Frailty Variance  - - - - - - - - 0.542 - - 0.001* 

Goodness of fit              

Log-Likelihood  -3,683 - - - -45,030 - - - -42,275 - - - 

AIC  7,400 - - - 90,090 - - - 88,782 - - - 

 *: p-value < 0.001 
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4.3 DISCUSSION AND CONCLUSIONS 

The growing complexity of the curb environment, driven by increasing demand for land-use 

access by ridehailing vehicles conducting PUDO operations and other road users, challenges the 

practice of curb management. Research on PUDO dwell time is warranted because of the 

relationship between this metric and PUDO zone capacity. This study advances the 

understanding of passenger car PUDO dwell time factors and facilitates reliable forecasting 

based on hazard-based duration models and real-world data of PUDO operations by ridehailing 

and other passenger vehicles.  

The Log-logistic Accelerated Failure Time model was the superior formulation for 

describing passenger car PUDO dwell times. This contrasted with previous studies’ assumptions 

about PUDO dwell time as an exponential or gamma distribution in models that assessed flexible 

curb space use at the street intersection level (You Kong et al., 2020) and macroscopic level (Yu 

& Bayram, 2021), respectively.  

In addition, no previous models have captured the influence of explanatory factors of 

PUDO dwell time. Our research showed that aspects related to passenger maneuvers, including 

the number of passengers, pick-ups (as opposed to drop-offs), and the need to access the 

vehicle´s trunk may relate to significantly longer stop durations. These findings were expected 

and were in line with anecdotal evidence from  previous studies (Fehr and Peers, 2019). 

The location and time of day may also help estimate how likely PUDO operations are to 

take more time, with significantly longer stops in the afternoon and at the curb (as opposed to in 

the morning and in the travel lane, respectively). Generally, studies that have documented PUDO 

dwell time operations at the curb and in street have also shown longer stop durations at the curb 

(Fehr and Peers, 2019; Lu, 2018; Smith et al., 2019).  

Traffic-related factors, including a greater number of vehicles at the adjacent curb and travel 

lanes, may also play a role in PUDO durations but with less practical significance.  

 Management factors can affect PUDO dwell times. In comparison to passenger cars, 

ridehailing vehicles tended to take less time, while PUDOs by taxis took longer. Additionally, 

the models were used to test the effects of two curb management strategies, including adding 

PUDO zones and later overlaying geofencing, based on before-after study conditions. Adding 

PUDO zones together with geofencing was found to be related to faster PUDO operations at the 
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curb. A possible way that geofencing technology may help accelerate PUDO events is by 

providing information shared by driver and passenger about the stop location, which allows them 

to better prepare before the event. 

The outcomes of this research have important implications for researchers and 

practitioners interested in understanding PUDO operations in the curb lane and making decisions 

about how to regulate those operations and integrate them into the current transportation system. 

Curb management policies can be improved from the current one-size-fits-all approach to a more 

data-driven approach that considers how significant variables can influence dwell time. The 

unbalanced nature of human mobility flows, such as a typical higher proportion of passenger 

drop-offs at a workplace in the morning commuter peak than in the evening, motivates context-

specific PUDO parking time and space restrictions. Our survival dwell time model can produce 

PUDO dwell time estimates based on knowledge of passenger maneuvers, vehicle location (curb 

vs. street), time of day, nearby traffic conditions, and management factors. These estimates can 

be used to inform discussions and support decisions of city officials, who often struggle to define 

priority usages of the curb with little ground-truthed data. 

In addition, this research further advances modeling efforts in curb management by 

providing the first parameterization of dwell time based on real-world data. Ongoing efforts to 

enhance analytical capabilities to model the growing complexity of the curb environment can 

integrate our PUDO dwell time model to estimate the needed PUDO zone capacity at a system 

equilibrium for a given city or blockface.  

As the debate about implementing curb management strategies such as adding PUDO 

zones, geofencing, and pricing downtown curbside parking evolves in academic and policy 

circles, future research should further investigate how PUDO zone user heterogeneity drives the 

outcome of pricing schemes and parking time limits in these zones. Additionally, further 

research is warranted to assess whether different road characteristics, such as those for arterials 

and local streets, may explain variance in passenger vehicle PUDO dwell times. 
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Chapter 5. EVALUATION OF THE IMAPCT OF RIDEHAIL CURB 

MANAGEMENT STRATEGIES AND METRICS 

WITH SIMULATION 

Multiple cities in the U.S. are considering curb management policies and regulations that affect 

ridehailing vehicles. For instance, as a curb management strategy, pilot programs are looking 

into the implementation of PUDO zones in Fort Lauderdale, Washington D.C., San Francisco, 

Boston, New York, and Seattle. 

Curb management relies on performance metrics to design, plan and assess the 

performance of parking infrastructure. Parking occupancy, for instance, is a conventional parking 

metric frequently used by local governments in performance-based parking pricing programs. 

Specifically in Seattle, parking rates are frequently adjusted to achieve a parking occupancy rate 

between 70 and 85 percent (Baruchman, 2018). 

This research aims to understand the impact of ridehail curb management strategies on 

traffic operations, PUDO operations and other curb users, including paid parking and 

commercial vehicle loading and the relationship between curb performance metrics. 

 

5.1 SIMULATION DESIGN 

Simulation models were developed to evaluate, under varying street and curb demand profiles, 

the effect on curb management metrics of adding PUDO zone space, geofencing PUDO vehicles 

to PUDO zones, and increasing the occupancy of PUDO vehicles. 

In a previous study, Ranjbari et al. (2020) evaluated two curb management strategies in 

Seattle, Wash., in an area where large numbers of workers commute using ridehailing services. 

The strategies were 1) a curb allocation change from paid parking to PUDO zones, and 2) a 

geofencing approach by ridehailing companies that directed their drivers and passengers to 

designated PUDO zones on a block. Real-world data about ridehails from the above study in 

Boren Ave N were used to calibrate our simulation model of this street. The calibrated models 

reflect conditions observed during a typical weekday morning and afternoon commuter peak 

hour periods. During these periods, close to half of the traffic in the area performed passenger 
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load/unloads. The modeled conditions correspond to Ranjbari et al. (2020)’s study phase 2, when 

added PUDO zones were in place and geofencing of ridehail vehicles was not implemented. In 

VISSIM software (version 9), the discrete event simulation was built by using the software 

graphical user interface. The VISSIM-COM interface with Python (version 3.8) was used to 

access and manipulate VISSIM objects during the simlaution dynamically.  

Previously in this dissertation research (see Chapter 4), we developed the first sound 

parametrization of ridehailing passenger load/unload dwell times with hazard-based duration 

models. Our Log-logistic Accelerated Failure Time model was used to estimate the cumulative 

probability distribution function F(t) of different type of PUDO vehicles. The simulated vehicles 

in VISSIM followed these dwell time stochastic distributions. R-statistics software was used to 

calibrate the dwell time model model with the survreg() function, and the predict() function was 

used to estimate cumulative distribution functions. 

5.1.1 Policy Scenarios and Model Parameters 

Three policies will be evaluated with different impact on model parameters (see Table 5-1):  

• Adding PUDO zone capacity: Increasing or reducing allocation of curb space to 

passenger unload/load zone type. In previous studies, this typically comes from 

converting other curb allocation types such as on-street parking 

• Geofencing ridehail vehicles to PUDO zones: Directing ridehail vehicles to designated 

locations such as passenger unload/load zones. This strategy involves the creation of a 

virtual geographic boundary to make it easier for drivers and riders to locate one another. 

• Increasing the occupancy of PUDO vehicles: To address Single Occupancy Vehicle 

(SOV) reduction goals, cities are considering encouraging higher vehicle occupancy 

rates. Ride-splitting services such as Uber Pool represent an opportunity to achieve this 

goal. 
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Table 5-1. Evaluated ridehail policy scenarios and impact on model parameters: 

Policy Scenario Impact on model parameters 

PUDO Zone 

Capacity 

Assuming a typical passenger car length of 20 feet, incremental positive 

variations of this curb space length per blockface will be tested 

Geofencing Based on the research on hazard-based modeling of PUDO dwell time 

presented in Chapter 4 of this dissertation, it is expected that geofencing 

would reduce dwell time in for operations happening on the curb. 

Ridehail 

Occupancy Rate 

Based on our previous research on hazard-based modeling of PUDO dwell 

time, it is expected that each additional ridehailing passenger would increase 

dwell time. Additionally, to represent an range of effectiveness of this policy 

on reducing PUDO vehicles, a 0% and 50% reduction of passenger load stops 

will be tested. 

 

Additionally, the policy scenarios above will be evaluated under a set of different scenarios: 

• AM Commuter Peak Hour Period scenario: considers a realistic representation of 

traffic conditions based on data collected in Boren Ave N. This period was characterized 

by a high share of passenger unloads (roughly 40% of all traffic), which is probably 

related to work trips with destination at the office buildings in the area. 

• PM Commuter Peak Hour Period scenario: also based on traffic conditions on Boren 

Ave N, this period represents a condition of high share of stopping vehicles for loading 

passengers (20-30% of traffic), with some demand for unloading (2-8% of traffic). This is 

descriptive of a peak travel period at the workday in a mixed-use area, where employees 

leave the workplace and there are some incoming trips generated by restaurants and bars 

adding to the traffic. 

• Growing traffic volume scenarios: to test the relationship between curb management 

metrics under a wide range of traffic volumes, a series of four scenarios showing traffic 

volume growth rates of 100%, 200%, 300% and 500% was evaluated. In these scenarios, 

the share of curb space demand by mode was kept constant and like conditions observed 

during the PM peak commuter period. Capacity of urban streets in terms of hourly 

volumes is driven by capacity at intersections because these streets are in grids with 

multiple nearby intersections. To test the theoretical impacts of curb management 

strategies isolated from performance of nearby intersections, this scenario assumed free 

flow of traffic on Boren Ave N at the adjacent intersections with two-way stop-controlled 

intersections. 
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In summary, six model parameters were selected to evaluate the impact of ridehail operations on 

traffic operations and other users of the road under different condtiions: 

• Number of on-street parking spaces for PUDOs: 1, 2, 3 or 4 spaces per blockface 

• Geofencing of ridehail vehicles: Yes or No 

• Occupancy of PUDO vehicles: 1 or 2 passengers per vehicle 

• Reduction of PUDO traffic due to increased PUDO vehicle occupancy: 0% or 50%. 

• Traffic volume growth on the street: 100%, 200%, 300% or 400% growth 

• Signal control at street intersections: all-way stop controlled or two-way stop 

controlled 

 

5.1.2 Measures of Effectiveness (MOEs) 

The following MOEs will be tracked in the VISSIM model to assess the impact of the ridehail 

strategies introduced above and evaluate the performance of curb stop operations: 

• Hourly throughput in travel lanes adjacent to curb parking describes the number of 

vehicles successfully driving through the street during the analysis period. Provides a 

measure of the relative productivity of the street compared to an alternative (FHWA, 

2021). 

• Hourly vehicle throughput of on-street parking spaces is adapted from the measure 

above, but specific to vehicles successfully accessing curb spaces. 

• Hourly passenger throughput of on-street parking spaces is helpful to capture that 

higher occupancy vehicles perform a more efficient use of the space when transporting 

passengers. 

• Percent of curb stops unserved/incomplete, adapted from the throughput MoE (FHWA, 

2021). 

• Occupancy of on-street parking is the percentage of time in an hour that curb spaces 

are occupied by a vehicle. Describes the utilization of parking and, consequently, the 

probability of finding an open space. 

• Number of full curb space encounters. Vehicles cannot park when curb spaces are full 

and need to wait for the next available spot where they can access. 
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• Uptake time can be defined as the time from a pick-up vehicle’s arrival at the 

appropriate city block to arrival at the curbside. The City of Washington D.C. proposed 

an uptake time of  fewer than 120 seconds on streets with certain traffic flow conditions 

(DDOT, 2019). Uptake time does not include stop dwell time at the parking space. 

Arrival at the city block was assumed to occur after the vehicle cleared the adjacent 

intersections and entered the street link in the evaluated blockface. 

5.1.3 Problem Description 

The case study area includes a 2-lane 2-way road segment of Boren Ave N in South Lake Union, 

Seattle, between Thomas Street and Harrison St. The study area street includes one waving-

through lane for through traffic and one curb lane for parking in each direction (i.e., northbound 

and southbound) and an all-way-stop controlled intersection on both ends. Three main different 

type of road users were modeled including: 

• Vehicles driving through the street and not stopping at the curb. 

• Vehicles driving through the street and stopping at the curb, including: 

o PUDO vehicles: load or unload passengers. Two different types of vehicles 

performed these operations, including ridehails and other passenger cars. 

o PP vehicles: passenger cars that park in paid parking 

o CV vehicles: Load/unload goods by trucks 

Vehicles are generated at vehicle input points in the network following a Poisson distribution and 

travel through the network following static travel and parking routing decisions coded in the 

Vissim model.  
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Figure 5-1. Aerial view of Vissim Model 

 

5.1.4 Baseline Curb Parking Supply 

Figure 5-2 shows the baseline curb space allocation modelled in Vissim. Curb use types include 

Passenger Unload/Load (PUDO) Zone, Paid Parking (PP) and Commercial Vehicle Load Zone 

(CVLZ). For calibration purposes, a zone of stops in traffic lanes on both ways of the street was 

coded in the model to represent the real-world behaviors observed in Boren Ave N. After the 

calibration step, it was assumed compliant behavior by curb users and the scenario modeling did 

not consider non-compliant behaviors, including stops in the travel lane and interchange uses of 

curb spaces (e.g. PUDO vehicles use paid parking for passenger load/unloading, trucks use 

PUDO for load/unload). The reasoning behind this is that curb operations should not depend on 

contravening existing curb access rules to minimize traffic flow impacts. 

The total supply of curb parking (see Table 5-2 and Figure 5-2) is 18 spaces between blockfacces 

A and B, considering roughly 1 passenger car spaces for each 20 ft of curb length, and 1 

truck/commercial vehicle space for each 35 ft of curb. The west blockface (A) concentrates most 



 

 

70 

of the supply of paid parking spaces. The supply of PUDO spaces is balanced between both sides 

of the street and all the CVLZs are in the east blockface (B). 

 

 
Figure 5-2. Curb space supply in simulation model 

 

Table 5-2 Curb space allocation per blockface during weekday AM and PM activity periods 

and Phase I (Baseline) of study. 

Blockface* 
Paid Parking 

(Spaces) 

PUDO Zone 

(Spaces) 

Commercial 

Vehicle Load 

Zone (Spaces) 

Total per 

Blockface 

A 6 4 0 10 

B 2 4 2 8 

Total per Curb Use Type 8 8 2 18 

*Figure 5-2 represents the locations of blockfaces and curb use types on Boren Ave N.  
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5.1.5 Analysis Periods and Baseline Volume Conditions 

Two 1-hour peak periods were considered as the baseline for scenario modeling, a typical 

morning and afternoon peak hour commuter periods. Traffic and curb space demands for both 

periods were based on data collected in Boren Ave N in December, 2018. Table 5-3 summarizes 

the demand parameters for traffic and on the curb during both periods. 

The Morning Commuter Peak Hour Period showed approximately 100 vehicles/per 

hour on both directions of Boren Ave N, with 51-57% of total volume representing through 

traffic and the remaining demand for curb space. Passenger unloads are roughly 40% of all 

traffic, which is probably related to work trips with destination at the office buildings in the area. 

There still were some passenger loads but these made up a much smaller portion of the traffic 

(around 2%). Between 70-60% of all PUDO traffic were performed by ridehail vehicles, which 

related to transportation network companies such as Uber and Lyft, and the remaining 30-40% 

were performed by other passenger cars. Average vehicle occupancy of PUDO vehicles was 

roughly 1 passenger per vehicle. Demand for paid parking was 2-8% and there was some 

demand by commercial vehicles or trucks on the northbound direction (1%), typically by parcel 

carriers, servicing, postal or construction.  

The Afternoon Commuter Peak Hour Period volumes were roughly 75-90 

vehicles/per hour depending on the direction of traffic, with approximately 60-80% of total 

volume representing through traffic. Demands for curb stops represented the remaining 20-40% 

of traffic. The highest share of stopping vehicles were loading passengers (20-30%), and there 

was some unloading activity (2-8%). This trend in PUDO demand can be representative of the 

end of the workday in a mixed-use area, where employees leave the workplace and some 

incoming trips generated by restaurants and bars add to the traffic. More than half of PUDO 

vehicles were ridehails, and the share of passenger cars was higher than during the morning peak 

hour (38-49%). Average vehicle occupancy of PUDO vehicles was roughly 1 passenger per 

vehicle. Demand for paid parking was 2-5% and there was some demand by commercial vehicles 

or trucks on the southbound direction (2%).  
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Table 5-3. Traffic and Curb Use Demand per Period of Analysis and Street Direction. 

Demand Parameters 
Traffic 

Bound 

A: Typical Morning 

Commuter Peak Hourb 

B: Typical Afternoon 

Commuter Peak Hourc 

Passenger Loading 

Demand (%)a 

North 2% 31% 

South 1% 19% 

Passenger Unloading 

Demand (%)a 

North 38% 8% 

South 41% 2% 

Split of PUDOS by 

ridehail/passenger car 

North 58%/42% 51%/49% 

South 70%/30% 62%/38% 

Occupancy of PUDO 

vehicles 

(passengers/vehicle) 

North and 

South 
1.01 1.16 

Paid Parking Demand (%)a 
North 2% 5% 

South 8% 2% 

Commercial Vehicle 

Parking Demand (%)a 

North 1% 2% 

South 0% 0% 

Through Traffic (%) 
North 57% 58% 

South 51% 77% 

Total Traffic 

(Vehicles/hour) 

North 104 74 

South 103 87 

Notes: 

a. Percentage relative to total traffic. 

b. Based on data collected at Boren Ave N, Seattle, on Wednesday December 19, 2018, from 

8:30 AM to 9:30 AM. 

c. Based on data collected at Boren Ave N, Seattle, on Wednesday December 19, 2018, from 

4:30 PM to 5:30 PM. 

 

5.1.6 Vehicle Dwell Time Estimation 

In survival analysis, the cumulative probability distribution function F(t) expresses the 

probability that the survival time is less than or equal to a specific time (t). The Log-logistic 

Accelerated Failure Time model calibrated in Chapter 4 of this dissertation was used to estimate 

the cumulative probability distribution function F(t) of different type of PUDO vehicles. These 

distributions were used as time distributions in VISSIM from which simulated vehicles are 

randomly assigned a percentile.  

In this approach, the regression coefficients of the survival model apply to an individual 

selected randomly from the population. Estimating the cumulative distribution function for each 

PUDO vehicle type possible would require evaluating the coefficients for each of the possible 

combinations of the independent variables of the model and drawing the simulated vehicle from 
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the correct distribution. For this reason, a fewer number of PUDO dwell time distributions were 

estimated fixing some of the user characteristics to an “average” PUDO vehicle. These average 

values were obtained based on the data collection effort on Boren Ave N and previously 

described in Section 3.2of this dissertation. The “average” PUDO vehicle characteristics are: 

• Number of individuals (passengers) = 1 

• Trunk Access = “No” 

• 5-minute traffic volume on the travel lane adjacent to the vehicle stop location = 7 

vehicles 

• On-street parking occupancy rate at the blockface of the stop location = 3 vehicles 

• Occupancy of off-street parking garages = 60% 

A set of characteristics were allowed to vary between PUDO vehicle types to capture the 

expected impact of ridehail curb management strategies and better represent dwell times for each 

of following user type combinations: 

• Type of vehicles: Ridehail or passenger car 

• Period: Morning or afternoon 

• Location of stop: street or curb 

• Type of event: passenger load or unload 

• Geofencing in place: Yes or No 

For non-PUDO vehicles in the model, that is, passenger car parking and truck load/unload stops, 

the empirical cumulative distribution function of the operations observed in Boren Ave N was 

used. 

 

5.1.7 Model Validation and Simulation Parameters 

The model validation process was done according to the Washington Department of 

Transportation’s VISSIM protocol (WSDOT, 2014). Model validation can be broken down into 

two different criteria: 

• Confidence: relates to ensure that the model results are representative of the model and 

not skewed towards a statistical outlier. 
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• Calibration: process to achieve adequate reliability or validity of the model by 

establishing suitable parameter values so that the model replicates local traffic conditions 

as closely as possible. 

The seeding period was set to 10 minutes following WSDOT’s guidelines (WSDOT, 2014). To 

ensure confidence of the model, that is, that the results are representative of the unknown model 

average, the required minimum of simulation runs was estimated using the following formula 

below (equation 5.1) (FHWA, 2019). 

𝐶𝐼1−𝛼% =  2 ∗ 𝑡
(1−

𝛼

2
)𝑁−1

𝑠

√𝑁
  (5.1) 

Where: 

𝐶𝐼1−𝛼% = (1 − 𝛼)% confidence interval for the true mean, where 𝛼 equals the probability of the 

true mean not lying within the confidence interval. 

𝑡
(1−

𝛼

2
)𝑁−1

 = Student’s t-statistic for the probability of a two-sided error summing to 𝛼 with N-1 

degrees of freedom, where N equals the number of repetitions 

S = standard deviation of the model results 

 

The number of simulation runs and error margin were selected considering computational power 

limitations and the similarity between alternatives. An error margin of one standard deviation at 

the 95% confidence level as preferred, which yields 23 simulation runs per scenario. 

Calibration of the model was conducted by comparing throughput volumes, speed and 

number of parking operations model outputs and field data. Speed and number of parking 

operations were allowed to vary within 10% of the observed values. For throughput volumes, the 

GEH formula was used (equation 5.2) (WSDOT, 2014): 

𝐺𝐸𝐻 =  √
2(𝑚−𝑐)2

(𝑚+𝑐)
  (5.2) 

Where 

GEH should be calculated to a value of 3 or lower. A value of 4 is acceptable for local roadway 

facilities. 

m = output traffic throughput volumes from the simulation (vehicle/hour/lane) 

c = traffic throughput volumes based on field data (vehicle/hour/lane) 

 

- 
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Table 5-4 shows the calibration results. Eight data collection points in the model matched real-

world screening counts and were used to track average throughput and speed among all five 

simulation runs. All GEH values were withing the recommended 3 or lower. Only the data 

collection points located on Thomas Street west of Boren Ave N - Westbound, and in Boren Ave 

N South of Thomas St - Northbound showed an acceptable value of 3 during the PM Commuter 

peak period. This volume discrepancy is probably due to the vehicle ingress/egress at Amazon’s 

parking garages on that segment of Thomas Street, and surface lot east on the southeast corner of 

the Boren Ave N and Thomas St intersection which were outside the study area and not included 

in the model. Differences in average speed between model and field data were also within the 

acceptable range of 10% of the posted speed limit (WSDOT, 2014). 

5.1.8 Modeling Assumptions 

Several assumptions were made to code the simulation scenarios. These are explicitly listed 

below: 

• Driving behaviors were assumed to follow VISSIM default values, including but not 

limited to driver aggressiveness, blockage time distribution of parking maneuvers and car 

following models.  

• All vehicles stopping at the curb waited up to 60 seconds in the adjacent travel lane 

before they disappeared from the network. This behavior is set with VISSIM’s default 

diffusion time parameter, which was a helpful representation of this driving behavior. 

Sensitivity analysis tested the impact of variations of this parameter to 180 and 300 

seconds, but not significant deviations from the model scenarios and derived conclusions 

were found. 

• After the calibration step, it was assumed compliant behavior by all curb users and the 

scenario modeling did not consider non-compliant behaviors, including stops in the travel 

lane and interchange uses of curb spaces (e.g. PUDO vehicles use paid parking for 

passenger load/unloading, trucks use PUDO for load/unload). The reasoning behind this 

is that curb operations should not depend on contravening existing curb access rules to 

minimize traffic flow impacts. 
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• Geofencing strategy does not result in volume increase due to “calling effect” at the 

network level for a given set of PUDO zones. This assumption is plausible in the case of 

a uniform distribution of PUDO zones and vehicles in an area with geofencing in place. 

• Boren Ave North was assumed to not have overtaking lane. The reasoning behind this is 

that curb operations should not depend on creating unsafe situations for overtaking 

maneuvers driving onto traffic in the opposite direction. 
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Table 5-4. Model Calibration Results 

    Field Data Model Data Difference 

GEH 

Street Segment Description Volume 

Avg. 

Speed Volume Avg. Speed Avg. Speed Volume % Volume 

AM Commuter Peak Period         
Boren SB: Midblock 103 11 101 10 -1 -2 -1.9% 0 

Boren NB: Midblock 104 12 108 15 3 4 3.8% 0 

Thomas WB: East of Boren Ave 190 18 184 16 -2 -6 -3.2% 0 

Thomas EB: East of Boren Ave 107 18 115 14 -4 8 7.5% 1 

Thomas WB: West of Boren Ave 221 14 194 15 1 -27 -12.2% 2 

Thomas EB: West of Boren Ave 122 16 114 17 1 -8 -6.6% 1 

Boren SB: South of Thomas St 85 12 81 14 2 -4 -4.7% 0 

Boren NB: South of Thomas St 105 15 100 14 -1 -5 -4.8% 0 

Total among all street segments 1,037 - 997 - - -40 -3.9% - 

PM Commuter Peak Period         
Boren SB: Midblock 100 13.5 87 14 0 -13 -13.0% 1 

Boren NB: Midblock 79 12.3 74 15 2 -5 -6.3% 1 

Thomas WB: East of Boren Ave 122 17.5 131 17 0 9 7.4% 1 

Thomas EB: East of Boren Ave 284 11.8 310 14 2 26 9.2% 2 

Thomas WB: West of Boren Ave 146 15.2 115 16 1 -31 -21.2% 3 

Thomas EB: West of Boren Ave 280 9.9 288 12 2 8 2.9% 0 

Boren SB: South of Thomas St 72 15.8 69 14 -1 -3 -4.2% 0 

Boren NB: South of Thomas St 87 14.8 61 15 0 -26 -29.9% 3 

  

Total among all street segments 1,170 - 1,135 - - -35 -3.0% - 
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5.2 RESULTS AND DISCUSSION 

The first thing to observe is that the marginal improvement of the adding PUDO zone strategies 

decreases with the number of PUDO spaces, assuming constant traffic volumes. This is 

represented by the impact of this strategy during the PM commuter peak hour on street 

throughput and the number of times a PUDO vehicle arrivals and the PUDO zone was fully 

occupied (see Figure 5-3 and Figure 5-4). Street productivity (in terms of street throughput) 

increased roughly 2% from one to two PUDO spaces per blockface, however, with additional 

spaces the improvement was nearly 0%. Similarly, the number of PUDO vehicle arrivals with a 

full PUDO zone was reduced roughly 64% by converting 1 to 2 PUDO spaces, but this 

improvement dropped to 31% from 2 to 3 spaces per blockface, 6% from 3 to 4. With 4 PUDO 

zone spaces per blockface, no occurrences of a PUDO vehicle arrival with full PUDO zones 

were observed. Similar results were observed during the morning peak hour period. 

The AM and PM commuter peak period conditions showed that PUDO operations are 

well supplied with 2 or 3 PUDO spaces per blockface, as the impacts of PUDO operations on 

through traffic and the amount of PUDO vehicles that had to initially wait are mitigated with this 

PUDO capacity. These results indicate that the observed demand for the existing 4 PUDO spaces 

in Boren Ave N does not reach the capacity of these spaces and lead to congestion and impacts to 

other users. Under these conditions of “oversupply” of PUDO spaces, ridehail strategies such as 

geofencing may have a limited impact, as represented by the close performance of the scenario 

with geofencing in place compared to the baseline scenario based on street throughput and full 

PUDO space encounters (see Figure 5-3 and Figure 5-4). 
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Figure 5-3. Throughput under increasing PUDO space conditions during the PM peak hour1. 

 

 

Figure 5-4. Full curb encounters by PUDO vehicles at PUDO zones under increasing PUDO 

space conditions during the PM peak hour1. 

 
1 Geofencing: scenario with geofencing of ridehails to PUDO zone. 95% confidence interval error margin shown. 
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Under growing volume conditions, some relationships between curb management metrics 

can be identified. One of these relationships is among average PUDO space occupancy, number 

of full curb space encounters, number of PUDO stops uncompleted and average uptake time (see 

Figure 5-5, Figure 5-6 and Figure 5-7). PUDO space occupancy describes the conditions of 

utilization of the space, and therefore, it’s related to the probability of having spaces available for 

incoming PUDO vehicles. Under the baseline scenario with no ridehailing strategies in place, 

average curb space occupancy increased with hourly volume with an average 13% increase in 

PUDO space occupancy for every 100% volume growth (roughly 200 more vehicles in the 

street). As occupancy of PUDO space increased with demand per space, so did the amount of full 

PUDO space encounters that grew exponentially with volume (see Figure 5-7).  

All of this translated into an increase of incomplete PUDO stops and of increased delay 

for PUDO users. Figure 5-6 shows the ratio of unserved PUDO stops increased from roughly 0% 

to close to 10% for an accumulated volume growth of 400%, and final average PUDO space 

occupancy of roughly 70%. In the baseline conditions, average uptake time of PUDO vehicles 

also increased from roughly 13 sec./veh. to 38 sec./veh., a 92% increase (see Figure 5-7). 

Ridehail curb management strategies showed a potential impact on the performance of 

PUDO spaces, and this impact was greater with increased volumes. Geofencing ridehails to 

PUDO spaces decreased the percentage of PUDO stops incomplete from 4-10% to 2-7% (an 

average decrease of 31%) for growth scenarios over 100% growth (see Figure 5-6).  

The range of impact of the policy targeting an increase in PUDO vehicle occupancy is 

shown between the scenarios of no change in passenger loads and 50% reduction in passenger 

loads. If such policy is unsuccessful and vehicle efficiencies did not translate into lesser number 

of vehicles and curb demand, this policy could lead to higher average uptake times and unserved 

PUDO stops than the status quo since PUDO dwell times increase for every additional passenger 

load/unload (see Figure 5-6 and Figure 5-7). A logical maximum upper threshold is a 50% 

PUDO vehicle reduction from increased occupancy to 2 passengers per vehicles. This scenario 

improved curb space performance with lower uptake times and unserved PUDO stops and 

performed similar to the geofencing policy based on those metrics. More comprehensively, 

passenger throughput would be doubled under the pooling scenarios, and thus, increasing the 

productivity of PUDO zones overall over the geofencing scenario.  
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A comprehensive evaluation of ridehail strategies must not only evaluate the effect on 

PUDO zones and PUDO vehicles, but also on other competitive uses of the curb and road traffic. 

All the metrics discussed were tracked for the paid parking and commercial vehicle loading users 

in the simulation. In line with the PUDO mode, increased growth in volumes led to worse 

performance on paid parking spaces and CVLZs in terms of percentage of unserved stops and 

average uptake times (see Figure 5-9 and Figure 5-10). The effects of ridehail strategies on paid 

parking and commercial vehicle loading uses is not conclusive, due to the greater variations 

observed in the metrics. This variation could be driven by the smaller sample size (due to smaller 

share of the paid parking and commercial vehicle loading demands). Performance of paid 

parking and CVLZ spaces could also be driven by the balance (or unbalance) between demand 

and supply at these spaces, thus, leading to an effect of geofencing and the resulting nearby 

better conditions on the curb to be only marginal (see Figure 5-9and Figure 5-10). 

 

 
Figure 5-5. Curb space occupancy of PUDO spaces under increasing volume conditions2 

  

 
2 Geofencing: scenario with geofencing of ridehaisl to PUDO zones. Pool – 100% PL and 50% PL: scenarios with 

occupancy of 2 passengers/PUDO vehicle and 0% and 50% passenger load reduction, respectively. 95% confidence 

interval error margins shown. 
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Figure 5-6. Percentage of PUDO stops incomplete under increasing volume conditions. 2 

 

 

Figure 5-7. Full curb encounters by PUDO vehicles at PUDO zones under increasing volume 

conditions2. 
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Figure 5-8. Average Uptake Time of PUDO vehicles under increasing volume conditions. 

 

  



 

 

84 

 
Figure 5-9. Ratio of PP and CV vehicles stops uncomplete under increasing volume conditions3. 

 

 
Figure 5-10. Average Uptake Time of PP and CV vehicles under increasing volume conditions3 

  
 

3 Geofencing: scenario with geofencing of ridehail vehicles to PUDO spaces. PP: passenger cars using paid parking; 

CV: commercial vehicles using CVLZs. 95% confidence interval error margins. 
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5.3 CONCLUSIONS 

In recent years, researchers and practitioners have recognized the rapidly growing complexity of 

curb management, with emerging uses such as MoD services and high competition among all 

road users, and have sought new methods to address the gap in understanding and analytical 

capability for evaluation. 

The lack of curb data and metrics is a challenge that hinders research in this area. To 

overcome this, some authors have used exploratory interview-based research for identifying 

policy problems and solutions based on public and private perspectives (Diehl et al., 2021). 

Another series of studies attempted to model different aspects of parking and ridehailing 

services, but had to rely on assumptions regarding the performance of ridehailing vehicles to 

represent real-world operations without empirical data (Beojone & Geroliminis, 2021; Kondor et 

al., 2020; Su & Wang, 2019; Xu et al., 2017; Yu & Bayram, 2021). 

Recent pilot studies investigate ridehailing PUDO operations in the street and make 

recommendations about the allocation of PUDO zones (City of Fort Lauderdale, 2018; DDOT, 

2019; Fehr and Peers, 2019; Lu, 2018; Smith et al., 2019). Collectively, these studies have 

proposed PUDO operation metrics, however, the effectiveness of current and emerging curb 

management technologies on these PUDO metrics and the inter-modal curb space competition 

have not yet been investigated.  

Our research addresses these gaps by modeling and evaluating the impact of ridehail curb 

management strategies on traffic operations, PUDO operations and other curb users, including 

paid parking and commercial vehicle loading. This was achieved by evaluating under varying 

street and curb demand profiles, the effect of adding PUDO zone space, geofencing PUDO 

vehicles to PUDO zones, and increasing the occupancy of PUDO vehicles. This builds on our 

previous dissertation research in Chapter 4 developing the first sound parametrization of 

ridehailing passenger load/unload dwell times, leveraging naturalistic data to link dwell times 

essential characteristics including the locations of these operations, passenger maneuvers and 

operation management strategies. 

An evaluation of AM and PM commuter peak conditions in the modelled street showed 

how the complexity in PUDO operations relates to curb management metrics. Periods of higher 

share of passenger loadings observed in the PM period drive higher PUDO space occupancy 
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levels and number of unserved vehicles due to the longer dwell times. The strategy of adding 

PUDO zones showed a decreasing marginal effect on PUDO operations. Under conditions of 

oversupply for PUDO operations observed during the AM and PM commuter peak periods, these 

vehicles may have a limited impact on traffic operations, other PUDO users and other users of 

the curb based on the metrics evaluated, even if PUDO vehicles represent a high share of the 

street volumes.  

The strategy of geofencing PUDO vehicles to the corresponding zones has the potential 

to shorten PUDO dwell times. This operational change can translate into an improvement of 

productivity at the curb for other PUDO vehicles. Paid parking, and commercial vehicle loading 

uses of the curb can also be affected by improvement of adjacent conditions from the geofencing 

strategy, however, this result is inconclusive due to the small sample and large variability of paid 

parking and commercial vehicle users in the observed conditions. The range of impact of 

enhancing pooling with two passengers per PUDO vehicle was tested, and showed that 

performance improvements focused on vehicle movements can be similar to geofencing in the 

case of a 50% passenger load reduction, however, overall productivity in terms of passenger 

throughput at the PUDO zone is much greater due to the higher vehicle occupancy. 

This research constitutes the first step in understanding the impact of curb management 

strategies on metrics focused on PUDO vehicles and among multi-modal competition in curb 

environments, which is essential for efficiently manage this public asset balancing all the curb 

competitive needs.  
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Chapter 6. CONCLUSIONS 

There is growing pressure in cities worldwide to find innovative ways to better manage and use 

scarce space. Cities with alley networks increasingly recognize the potential to incorporate the 

increase in resources provided by functional alleys for environmental, economic and social 

benefits. Also, local governments seek new tools to evaluate the impacts of curb management 

strategies that prioritize different users’ needs, and help to understand the growing complexity of 

these environments. 

The lack of data hinders research in these areas. On one side, despite alley’s historical 

role providing access to land uses for freight and servicing, these infrastructures have not been 

studied as a resource in modern freight access planning. Also, a series of studies on curb 

management have used exploratory interview-based research for identifying policy problems and 

solutions based on public and private perspectives (Diehl et al., 2021). Another series of studies 

attempted to model different aspects of on-street parking and ridehailing services, but had to rely 

on assumptions regarding the performance of ridehailing vehicles to represent real-world 

operations without empirical data (Beojone & Geroliminis, 2021; Kondor et al., 2020; Su & 

Wang, 2019; Xu et al., 2017; Yu & Bayram, 2021). 

 Naturalistic data from a previous study of PUDO operations in Seattle (Ranjbari et al., 

2020) is leveraged using a hazard-based duration modeling approach to link dwell times essential 

characteristics, including the locations of these operations, passenger maneuvers, operation 

management strategies, and nearby traffic. Also, our research develops the first comprehensive 

alley inventory in the U.S. with an accurate GIS map of the network’s geospatial locations as 

well as measurements of physical attributes (e.g., alley length, alley width and, narrowest 

points).  

 Researchers and practitioners can use the Seattle case studies conducted in this 

dissertation as a measurable, in-depth investigation of curb and alley environments that suggest 

possible outcomes of vehicle operations in these spaces with practical implications for curb and 

alley management policies. Most importantly, our research provides frameworks for evaluation 

and analysis of the complexity of these infrastructures in dense urban areas. 

Our alley data collection methodology supports an adequate assessment of physical 

attributes that directly impact alley operations and functionality, particularly for freight, waste 
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management, and emergency vehicle access. Cities can use the information provided by a 

comprehensive scan of physical characteristics of urban alleys to make data driven decisions 

about the most cost-effective freight distribution systems for the last mile. Geospatial 

information of alley restricting dimensions such as effective height and width can help to decide 

between delivery vehicle designs that balance maneuverability, size and load capacity. 

Our research on PUDO dwell times with hazard-based models showed the heterogeneity 

of this curb metric in relation to location, passenger maneuvers, operations management, and 

traffic. Building upon this knowledge contribution, our simulation models tested the possible 

impact of ridehail strategies, including geofencing, adding PUDO zones and increasing ridehails 

passenger occupancy, on curb utilization and the relationships between performance metrics such 

as average space occupancy, ratio of incomplete stops and average uptake time for different 

users. 

With all the variations on curb configurations, curb demand volumes, transportation users 

in a city environment, our research represents a steppingstone necessary to provide a 

comprehensive view and understanding to support policies/strategies that efficiently manage this 

public asset balancing all the curb and alley competitive needs. 
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