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Abstract
Transit transfers are a necessary inconvenience to riders. They support strong hierarchical networks by connecting various
local, regional, and express lines through a variety of modes. This is true in Seattle, where many lines were redrawn to feed
into the Link Light Rail network. Previous transfer studies, using surveys, found that perceived safety, distance, and personal
health were significant predictors of transfers. This study aims to use smartcard data and generalized linear modeling to esti-
mate which elements of transfers are commonly overcome—and which are not—among riders boarding the Link Light Rail
in Seattle and its suburbs. The aims of this research are twofold: (1) critical analysis of attributes of transfer barriers so that
the future station area could serve improved riders’ accessibility; (2) equity of transfer barriers among the users by analyzing
the user breakdown of the origin lines and the destination. We use Seattle’s One Regional Card for All smartcard data among
the Link Light Rail riders in the Seattle metropolitan area in 2019, and applied a negative binomial generalized linear model.
The model suggests that walking distance and walking grade have significant effects on transfers. For the users’ equity analysis,
the disabled population tends to transfer less, while the low-income and youth riders populations tend to transfer more
often. Future research could incorporate a more mixed-methods approach to confirm some of these findings or include sta-
tion amenities, such as live schedule updates for common transfer lines.
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Effective public transportation systems should provide a
safe, easy, and dependable travel experience regardless of
the mode of travel. If a trip involves multiple modes of
transit—for example, a bus to light rail connection—
transit planning should minimize the transfer barriers
where possible. Doing so supports the network’s utility
by offering clear and accessible paths that reduce the dis-
ruption of transfers as much as possible. Transfers, in
any case, are a necessary aspect of any public transit net-
work. The necessity of transfers is especially true in
cities with various multimodal options and a clear
hierarchy to the network (e.g., regional, rapid, and local
transit options). Since 2003, planners in the Seattle
Metropolitan Area have launched ambitious multimodal
transit system plans, including the Link Light Rail
(LLR) system and subsequent expansions. The current
LLR stretches nearly 22mi, connecting Seattle and its
immediate surroundings areas. Some 27.6% of daily

riders transfer from other modes of transit. Despite the
importance of transfers and the necessity of their exis-
tence for the success of transit services, they can be an
overlooked facet of transit planning’s broader goals. A
group of transit operators surveyed by the U.S. Federal
Transit Administration considered ‘‘reducing rider diffi-
culty’’ the second-highest priority in their transfer system
objectives (1). However, only three of the 31 respondents
offered concrete goals or objectives related to passenger
convenience, revenue generation, or other factors. The
rest provided transfer rules—such as time between rides

1Department of Urban Design and Planning, University of Washington,

Seattle, WA
2Department of Civil and Environmental Engineering, University of

Washington, Seattle, WA

Corresponding Author:

James Eager, jmc.eager@gmail.com

us.sagepub.com/en-us/journals-permissions
https://doi.org/10.1177/03611981221119190
https://journals.sagepub.com/home/trr
http://crossmark.crossref.org/dialog/?doi=10.1177%2F03611981221119190&domain=pdf&date_stamp=2022-08-29


and cost of transfers—but lacked coordinated transfer
policies to improve the system’s user experience.

Transfer Experience and Penalties

The user experience of making connections within sys-
tems and between them is crucial in supporting positive
public perceptions of transit networks and their success
(2, 3). Previous studies have found that the disruption to
travel caused by a transfer plays a key role in whether
people take transit at all (4). As a result, transfers can be
a major barrier to the user experience of transit in both
perception and relative cost (5). While studies have
begun to look more closely at transfer penalties in travel
demand modeling (6–8), explaining major barriers to
transfers based on observed data is a limited field of
literature.

Transfer penalties applied in the cost functions fre-
quently used for transit optimization and modeling often
appear as a standalone variable. However, whether this
penalty includes both measurable costs (e.g., waiting and
walking times) and perceptual costs (e.g., feelings of dis-
comfort, safety) or exists as a singular penalty is debated
in the literature (4, 9). These costs can differ among
groups, which also potentially causes various equity
implications not thoroughly covered by existing research
(2, 8). Furthermore, the existing research tends to rely on
survey and focus group analyses instead of observed
transfers. This persists despite questions about the accu-
racy of stated preferences (5) and the ability to collect
numerous travel diaries (10).

Smartcards, such as Sound Transit’s (ST’s) ORCA
(One Regional Card for All), are contactless cards that
store value for transit services in the Puget Sound region
(11). Smartcard data offers a greater quantity of observa-
tions, improves replicability, offers a greater range of
temporal comparisons, and is easier to collect once the
infrastructure is in place (12). Smartcards also improve
the general transit experience by reducing uncertainties
about cost and intermodal operability that concern some
would-be transfer passengers (4, 5, 13). The effect of
these penalties is crucial to understanding how transfers
might affect the mode choice decisions of travelers. The
clear negative impact of transfers is a well-discussed
point in the literature (5). The physical and environmen-
tal influences of transferring can include concerns about
walking distances, elevation changes, or the speed of cars
on the adjacent road. The perceptual and mental influ-
ences covered by focus groups and surveys include
safety, anxiety, and mental disruption (2). This study
focuses on attempting to measure the former, where
observed transfers are used to determine how far people
are willing to walk for a transfer to travel to their desti-
nation among smartcard users in the LLR network.

Seattle’s Transit Network

The Seattle LLR system currently serves 16 stations
across nearly 22mi, running from Seattle’s University
District to Angle Lake in Seatac (14) (Figure 1). The
Link is managed and operated by ST, which also oper-
ates the express bus services and Sounder commuter rail
in the region. King County Metro (KCM) operates local
bus service and bus rapid transit (BRT) in most of the
Seattle Metropolitan Area, while Community Transit
(CT), of Snohomish County, WA, serves some of the
northern suburbs. In 2019, Link trains were boarded
79,674 times per week, on average. Of these boardings,
about 21,990 are riders transferring from a different
mode. Given the current state of the Link, with 13 of 16
stops in Seattle and a predominantly north–south orien-
tation, multimodal transfers are a common and neces-
sary part of the service. As the Link expands to 37 new
stations, the need for convenient transfers will likely
increase. This is not necessarily unique to the Link, as
riders in cities across the U.S.A. predominantly transfer
from bus to rail (1).

The planning and design process of the LLR system
and its expansion takes transferring into account. In
many cases, local transit authorities reroute existing bus
lines to serve as more effective ‘‘feeder lines’’ for the
LLR. In others, these agencies choose to forgo redun-
dant bus lines altogether (16). With further expansion on
the horizon, ST and other local and regional planning
agencies continue to follow this process (14). As bus
routes—local and express—rearrange to serve the LLR,
not all potential transfer stops land near a Link station
entrance. These non-adjacent feeder stations create pos-
sible walking transfers, where reaching the LLR system
involves longer walks that sometimes stretch beyond
ST’s definition of a ‘‘station area’’ (0.5-mi radius).

Research Goals

The primary purpose of this paper is to use observed
smartcard transfers to estimate the effects of physical and
built environment characteristics of observed transfers to
Seattle’s LLR network using ORCA smartcard data. The
first goal of this work is to better understand which bar-
riers could be overcome for transfers, and which might
not be. Barriers might include physical environment con-
cerns, such as Seattle’s hilly topography, or built environ-
ment concerns, such as the connectivity of the walking
network in half-mile station areas.

This can support the broader literature about transfer
penalties by offering an analysis of what features may
create barriers to transferring riders via objective data.
Further, this can guide station planning efforts to support
more convenient high-information transfers where possi-
ble. In some cases, this might include adjusting routes to
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provide clearer and more accessible routes between sta-
tions. In others, it may involve adjustments of road
design and speed limits, offering improved perceptions of
safety for transferring riders.

The second goal is to infer the interactions between
transfer barriers and various equity populations. By ana-
lyzing the user breakdown of the origin lines and destina-
tion stations, this study identified where certain transfer
pairs may need reexamination and adjustments to ensure

that all populations have equitable access to high-quality
transit (17–19). Among users of different ages, abilities,
and backgrounds, the needs for certain elements in the
transit network can differ (2, 5, 19), and taking a vertical
equity approach to this analysis can help address the
needs of transit-captive populations (17). While the data
in this study does not include granular demographic
data, studies have found that likely transit-captive popu-
lations often rely on transfers and interact with them in

Figure 1. Current and planned Link, bus rapid transit, and Sounder networks (15).
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distinct ways compared to others (5). Using the ORCA
data’s specific user types to parse this information out
can offer some exploratory findings on different age and
income groups’ transfer habits, as a proxy for more gran-
ular demographic data.

Methods

Three major sources of data underpin this research:
Open Street Map (OSM), KCM’s Google Transit Feed
Specification (GTFS), and ST’s ORCA transactions. R
and Python programming languages support the access,
analysis, and presentation of this data. Data collection is
also supported by Google and OSM application pro-
gramming interfaces (APIs).

Data

ORCA. ST supplied the ORCA smartcard data used in
this study. The Washington State Transportation Center
(TRAC) has organized the data into a matrix of origin
bus lines to destination light rail stations. In this format,
each LLR station has a column for each bus line it
received transfers from, and the accompanying count of
those transfers during each study period. TRAC has also
organized the data to offer individual LLR station-level
use for each study period. This station-level data includes
breakdowns by type of user (Table 1) and type of card
(such as those storing dollar values or those supplied by
employers). This study only analyzes the user type as this
elucidates how different groups of people might experi-
ence transfers differently. Data for this breakdown only
considers the transit agencies that the transfers engage
with: KCM, ST, and CT. A full table of definitions and
user composition can be found in Table 1.

TRAC’s ORCA data covers two time periods in 2019:
7 January to 23 March (winter) and 1 July to 31 August
(summer). These time periods are slightly unequal, so
transfers and ridership numbers were converted to
weekly transfer and ridership averages. A ‘‘transfer’’
defined by the ORCA card system is any boarding that
occurs within 2 h of a rider’s initial boarding. As a result,

there are a considerable number of transfers that
occurred within the 2-h time-frame that were not direct
connections between modes of public transit, which are
referred to in this study as ‘‘financial transfers.’’ There
are also transfers from LLR ‘‘to’’ LLR, which fall under
this same categorization. These could be continuations
of trips with an interruption, or a round-trip ride where
fewer than 2 h were spent at the destination. As a result,
only lines with at least one weekly transfer and a station
within a 1.5-mi walk were considered ‘‘reasonable
transfers.’’

Google Transit Feed Specification. GTFS offers a common
standard for transit agencies to publish spatial and sche-
duling data of their networks (20). Agencies offer static
GTFS feeds made up of timetables, routes, and stops
organized in several text files of relational data (Figure 2
outlines each piece of the GTFS data structure and how
they connect) and real-time GTFS feeds, which are con-
stantly updating with information about arrival and
departure times. The static feed is offered as free and
public information by KCM and offers the stations,
timetables, and routes of both KCM and ST. This data
offers the spatial framework for identifying nearest stops
on each line and the line characteristics.

Open Street Map. OSM is an open-source platform for
user-generated maps (22). These maps include detailed
data on street, transit, and walking networks around the
world, supported and updated by an active community
of users. For this project, OSM data is accessed through
the OSMnx package in Python, created by Geoff Boeing
(23). OSMnx couples the complex network analysis of
the NetworkX package with the data and routing from
OSM’s API. As a result, the package offers the ability to
easily calculate network and routing metrics along with
topological measures using Python. Unfortunately, OSM
does not provide native topographic data; however,
OSMnx can access the Google Elevation API to add ele-
vation data to the underlying transportation networks.

Table 1. One Regional Card for All User Definitions

User Qualification Share (%)

Adult None 81.6
Senior At least 65 years of age 3.7
Youth At least 6, but no more than 18 years old 5.0
LIFT Household income less than 200% of federal poverty level 5.4
Disabled Disability or Medicare recipient 4.3

Note: Share is ridership as a percentage of all trips recorded in the 2019 TRAC data. LIFT = Low Income Fare program.

Source: Definitions are adopted from Sound Transit (14).
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Some of the station area statistics from OSMnx are
nontraditional, such as the entropy and circuity of a
street network. Per Boeing (23), the entropy of a street
network is a method for evaluating how ‘‘grid-like’’ or
ordered a given street network is. Entropy calculations
from OSMnx are normalized on a scale of 0–1 (24),
where 1 is a perfect grid-like network and 0 indicates
streets open to all directions. According to Boeing’s eva-
luations, Chicago, Miami, and Minneapolis are the most
ordered cities (0.9), while Charlotte is the most disor-
dered city (0.002) in the U.S.A. (24). Circuity is a mea-
sure of how circuitous, or rounded, the network is. In
theory, a more ordered and straight network supports a
more coherent and successful transfer walking route, as
the network is easier to follow. Using a combination of
nontraditional and traditional statistics (such as intersec-
tion density) could compensate for any limitations in any
individual metric and offer a more complete picture of
station area street networks.

Linking Sources. Using Python, the process of connecting
these databases involves applying a few different
packages, such as pandas, NumPy, and geopandas, for
the manipulation and processing of both spatial and rela-
tional data. Using these packages, the ORCA transfer
data was filtered to reasonable transfers and the nearest
station for each origin line identified for routing. The
route with the shortest walking distance was taken and
metrics covering the distance, elevation change, and vehi-
cular speed along the route were collected. For each Link

station, OSMnx calculates and collects measurements of
the order (or gridedness), circuity, and density of the
half-mile station area. Finally, TRAC station-level rider-
ship data was aggregated for each complete origin line
and each individual Link station to produce proportions
of each ridership type (adult, youth, senior, disabled,
low-income) in these contexts. The list of these variables
and their groups can be found in the data dictionary
(Table 2), while the process is detailed by the flowchart in
Figure 3. An example of what the final routing looks like
is shown in Figure 4. In this graphic, nearby Link stations
are pointed out to contextualize the density of stations in
Downtown Seattle, and their proximity to some origin
stations suggests not all riders take the shortest routes to
their destinations. We will discuss the detailed process in
the Modeling section.

The main predictors tested in this study are those that
make up the transfer walking route. These variables,
such as the mean and max grade of the route, offer the
clearest parallel to the transfer preference surveys that
identified what riders’ stated transfer preferences are (2,
5). The station area characteristics control for how con-
nected, dense, and ordered the street network is in the
half-mile surrounding each light rail station. These
characteristics control for the possibility of other walk-
ing routes, as density and grid-like street networks offer
more coherent walkable paths than those that are less
grid-like (24). Finally, the ridership metrics of both the
origin line and the destination Link station offer a lens
for how willing to transfer different groups of riders
are.

Figure 2. Static Google Transit Feed Specification feed file connections and organization (21).

Eager et al 5



Modeling

Model Selection. We conducted a series of negative bino-
mial models to find the best fit predicting the number of
transfers from each likely transfer station to each paired
Link station. The negative binomial generalized linear
model (GLM) should provide an improvement over
other common models of count data, such as the Poisson
and Gaussian (linear) GLMs. This is a result of the nega-
tive binomial not falling to the same assumptions made
by these other types of modeling families. The negative
binomial model allows for unbounded counts and corre-
lation between events, and assumes an overdispersed
outcome (25).

Model Building and Interpretation. To identify the preferred
model—that is, the model that most effectively explains
the data—several models were tested and run. This study
took a stepwise approach to model building, beginning
with the transfer route characteristic variables. These are
the main predictor variables this study aims to use to
explain transfer differences, so their inclusion is

necessary. Gradually, variables from each following
group (Table 2) were added to explain further variance.
At least one variable from each of the link station area,

Table 2. Data Dictionary

Code Description Source

Transfer characteristics
Weekly Weekly transfers from origin line TRAC
Origin Most recent line ridden before the transfer to Link TRAC
szn Season of data collection period (winter or summer) TRAC

Transfer walking route
wkLen Shortest possible walking distance OSM
wkMnSpd Mean vehicular speed limit along route OSM
wkMxSpd Maximum vehicular speed limit along route OSM
wkGrade Mean grade of shortest walking path GEA
wkMxGrd Max grade of shortest walking path GEA
wkRise Total elevation gain of shortest walking path GEA

Link station area
stEnt Relative order (entropy) of transfer station area OSM
stCirc Total elevation gain of shortest walking path OSM
stStLen Sum of length of streets in station area OSM
stStDen Sum of street lengths divided by station area OSM
stIntDen Number of intersections divided by station area OSM

Link station ridership
lrLift Percentage of LIFT (low-income) users at Link station TRAC
lrSenior Percentage of senior users at Link station TRAC
lrYouth Percentage of youth users at Link station TRAC
lrDisable Percentage of disabled users at Link station TRAC
lrAdult Percentage of adult users at stations on link route TRAC

Origin line ridership
ogLift Percentage of LIFT users on origin line TRAC
ogSenior Percentage of senior users on origin line TRAC
ogYouth Percentage of youth users on origin line TRAC
ogDisable Percentage of disabled users on origin line TRAC
ogAdult Percentage of adult users on origin line TRAC

Note: TRAC = Washington State Transportation Center; OSM = Open Street Map; GEA = Google elevation application programming interface; LIFT = Low

Income Fare program.

Figure 3. Flowchart of the data, modeling, and analysis methods.
Note: ORCA = One Regional Card for All; GTFS = Google Transit Feed

Specification; API = application programming interface.
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link station ridership, and origin line ridership was pres-
ent in the final model, as each of these groups had some
degree of influence on the transfers between stations.
Any variables that were collinear or prevented conver-
gence of the model were removed. A flowchart

describing this—along with the data collection process—
can be found in Figure 3.

Each model was tested for the Akaike information cri-
terion (AIC) and Bayesian information criterion (BIC).
These metrics offer a method of comparing the fit and

Figure 4. International district—Chinatown Station transfer walking routes.
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explanatory power of each model. The AIC differs
slightly from the BIC, as it tends to pick models with
more covariates, while the BIC penalizes additional cov-
ariates. It is possible that the AIC and the BIC will find
the same model fits best. If they do not, it will offer an
opportunity to explore why that might be.

Discussion about model parameters will be informed
by quantities of interest and counterfactual scenarios
rather than traditional frequentist discussions (25). The
best-fitting model can then be used to simulate these sce-
narios, which offers a clearer picture of the model’s
implications and uncertainty (25). While coefficients and
p -values offer some explanations for how one might
interpret the model, these simulations offer more inter-
pretable results. Given that the negative binomial results
in log-link coefficients, reading these values off a table
can be misguided at worst and imperfect at best (25). As
such, simulation offers clearer interpretations and allows
for greater detail in discussing the model’s results.

Limitations

This study’s approach to understanding transfers is lim-
ited in a couple of ways. Firstly, by focusing on using
smartcard data, the collection of transfer information is
limited to those who use smartcards and those who trans-
fer to another mode of public transit. Those who do not
use smartcards and tap in or off at LLR stations from
other modes were not captured with the same detail. As a
result, this study can only truly begin to address the ques-
tions of transfers to the LLR from the bus network in
Seattle. While the bus network is the most used and most
expansive mode in Seattle, there is literature that suggests
people are willing to walk different lengths for different
modes of transit. It would be interesting to understand if
that relationship carries over to transfers.

This study does not account for people who simply do
not take transit because of transfer limitations. Instead, it
can serve as a proxy for which transfer characteristics are
most conducive to transfers and support a clearer frame-
work of understanding intermodal transit transfers going
forward. Exploring how different barriers interact with
the walking distance still informs the field. Furthermore,
some of the more granular analyses using smartcard
types or users is limited by the extent of the different
cards’ ability to get into different populations’ hands.
For example, it should not be assumed that 100% of
those eligible for low-income fares (ORCA Low Income
Fare program [LIFT]) are using the program, which also
applies to the youth, senior, and disabled cards applied in
this study.

On the subject of demographics, some may suggest
inclusion of demographic data in the modeling process
for this study. However, smartcards do not capture

specific demographic information. Furthermore, there is
no explicit data about smartcard user demographics in
Seattle. The most common way for frequent riders to
pay for Link trips is with a smartcard, although ticket
machines also sell one-way and day passes, which are not
captured here. Transfers from bus to LLR in Seattle
require a smartcard unless the rider pays twice (for exam-
ple, with cash on the bus and a day pass on the LLR).
For these reasons, the limited discussion about demo-
graphics and equity is entirely based on users of the
equity-focused ORCA card types. Despite these limita-
tions, applying explicit demographic indicators could
reveal more direct implications about transit-dependent
populations, rather than the proxy indicators we derived
through smartcard types.

There is also the possibility—especially in denser more
walkable neighborhoods—that people take different
paths to transfer with minor differences in distance.
Particularly in station area transfers, it is unlikely that
the speeds, slopes, and distances of a transfer walking
path would differ significantly, but it is possible that cer-
tain routes may be avoided because of reasons not cap-
tured by this study. The station area covariates are
expected to capture some of this potential variance by
accounting for the ease by which a rider might take a dif-
ferent walking route.

A difficulty with data collection also relates to the
nature of individuals’ smartcard use. The model built
assumes that the majority of riders diligently tap the card
readers for boarding, alighting, and transfer. However,
based on the ORCA data, it appears that riders may not
tap when transferring from the bus to the Link. The issue
appeared more frequent at terminus stations like Angle
Lake, where riders who likely transferred from the bus
to a different station did not tap until disembarking. As
a result, these transfers were categorized as Angle Lake
transfers, despite their lack of feasibility. Figure 5 shows
all the bus lines that registered a transfer to the Angle
Lake Link station. The approved class of bus lines was
determined to be feasible, while the discarded class was
not.

Results

Modeling Results

Model Building. The first step in the modeling process is
checking the distributional characteristics of the data.
The histogram of the transfers (Figure 6) shows that the
outcome is overdispersed or strongly skewed. A more
rigorous way to test for overdispersion is by implement-
ing a test that checks the Poisson assumptions outlined
earlier (see the Model Selection section), specifically com-
paring the null hypothesis of var(y)= l to an alternative
of var(y)=l+ c � f (l), where the function f (:) is a
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linear monotone function (26). The resulting coefficient c

is a measure of the dispersion of the outcome, where
c.0 implies overdispersion and c\0 implies underdis-
persion. The result of this test was a c value of 647
with a z -score of 5.13, clearly implying significant
overdispersion.

We applied a form of stepwise model building. By
adding variables in groups, the study could gauge how
well each group of variables adds to the descriptive
power of the model. However, during this process some
models did not converge. The likely reason is that some
covariates are moderately or strongly collinear. As a
result, a correlation matrix of the variables collected was
created and referenced during model building. During
this process, non-convergence led to the removal of vari-
ables that were collinear and did not contribute signifi-
cantly to the descriptive power of the model.

In the case of variables that described the origin line
ridership and the LLR station ridership, each of the vari-
ables were collinear within these groups. In both groups,
greater adult ridership was heavily linked to lower rider-
ship of youth, senior, disabled, and low-income riders.
Similarly, increases in each of these four equity rider

groups (youth, senior, disabled, and low-income riders)
was correlated to increases in the other three. In other
words, as youth ridership increased, senior, disabled, and
low-income riders also tended to increase. ORCA youth
riders were the strongest predictors and preserved in the
models, while the other groups were discarded.

Among the station area variables, similarities between
the covariates led to strong collinearity between intersec-
tion density, street density, street length, and entropy.
Entropy was the strongest predictor among these and
was preserved in the models alongside circuity. These
two variables present a clear picture of the station area’s
walking network characteristics, where high entropy and
low circuity suggest a dense grid-like network with mini-
mal curvature.

The results of each added group of covariates to the
model are shown in Table 3. In the table, model good-
ness-of-fit, coefficient estimates and their 95% confi-
dence intervals, and frequentist significance is arranged
from the least complex model—with only the transfer
walking route variables—to the most complex—with all
variable groups represented. Given the different scales of
the covariates, it is difficult to comment on the compara-
tive strength of each of them, but what is clear is that
many of the coefficient estimates line up with the theory
behind this model.

For example, higher street network entropy (stEnt) —
indicating a more grid-like network—is consistently a
positive correlation (2.5–3.8; CIs 0.5–5.8). Similarly,
wkGrade—measuring the mean grade of the walking
route—is consistently negative through all models (20.1
to 20.3; CIs 20.1 to 20.4). Both of these match the the-
ory underlining this model, where the study expected to
find walks along steeper streets would be less conducive
to transfers and more grid-like street networks would
support or indicate more transfers. Given that the 95%

Figure 5. Angle Lake transfer validation result.

Figure 6. Histogram of weekly transfer volumes to all Link
stations.
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confidence intervals for these variables also never over-
lap 0, we can be assured of the implications of these
coefficients.

The stepwise process involved several additional
changes. Firstly, adjusting the length of the transfer walk
distance (wkLen) to a logarithmic relationship from a lin-
ear one. The plot of walk length and weekly transfer
volumes (Figure 7) suggests that the relationship has a
slight curve, with few outliers. This prompted the change
to a logarithmic relationship between walking distance
and transfers, which will be discussed further in the fol-
lowing sections.

Secondly, we decided to include an interaction term in
the full model to better capture the effects of the walk
grade when accounting for all other variables. This inter-
action term is between the mean grade (wkGrade) and
maximum grade (wkMxGrd) variables. What the interac-
tion term asserts is that the effect of having a higher mean
walking grade is different when the max grade is higher
or lower; a steep slope in a given route increases the effect
that the mean grade has because the coefficient for this
term is positive in the final model. Both the p -value
(\0.01) and estimate (0.005 6 .003) of this variable in
Table 3 support this relationship between covariates.

Thirdly, a couple of changes for the sake of easier
interpretation were also included in each of these models.
These had no impact on the results, and only served to
support a more coherent discussion about their effects.
These involved changing the scales of a few variables.
The first was adjusting wkLen to hundreds of feet instead
of individual feet. The other two variables to change in
scale were the sums: ogSum and lrSum. In the case of ori-
gin line ridership, it was adjusted to hundreds of weekly
riders. Link weekly ridership was adjusted to thousands
of weekly riders.

It is important to note that this model intends to
explain current transfer patterns, while offering some

thoughts on how changes to these variables could sup-
port station planning efforts. Some variables were left in
the model despite appearing insignificant because of their
p -values and confidence intervals. For example, the coef-
ficients describing vehicular speeds along the walking
route (wkMsSpd and wkMxSpd) are insignificant at the
95% confidence level but still contribute to the model
goodness-of-fit. So, while they might not have a signifi-
cant effect on whether riders transfer between certain sta-
tion pairs, they do contribute to the explanatory power
of the model; more importantly, the walking route vari-
ables answer questions about their impact on transfers.
Specifically, it does not appear that the vehicular speeds
along walking routes had a statistically significant impact
on transfer volumes between stations in Seattle’s LLR
network.

Through the model building process one can also see
where additional variables help explain variance that was
picked up by other variables previously. For example,
the maximum grade of the walk between stations
(wkMxGrd) was highly significant until the variables for
light rail ridership were included (Table 3). Statistical sig-
nificance (or lack thereof) for a given parameter may not
imply a better model for out-of-sample results (25). So, if
this same model were applied to a larger sample of trans-
fer data in the LLR network, the inclusion of these vari-
ables theoretically could support improved estimates of
transfer volumes.

Model Interpretation. This research focuses on attributes
of the main variables influencing the transfer walking
route. These variables are the main glimpses as to which
transfer barriers people are willing to overcome regularly
or not. The clearest among these is the length of the walk
between stations. The other variables tested describe the
elevation changes and vehicular speeds along the walking
route (see Tables 2 and 3); however, these variables and
their effects are not as straightforward as walking
distance.

Starting with the effect of walking distance, the loga-
rithmic relationship identified in Figure 7 is further
examined in Figure 8. In this graphic, each point repre-
sents the estimated change in weekly transfer volumes
(and each line the 95% confidence interval) when a sta-
tion is moved one block closer from three different start-
ing points. On the y-axis is the model as each group of
control variables is added, with the top group consisting
of solely the walking route characteristics, and the bot-
tom group the full model.

A street block is taken as 300 ft, per OSM, and the
starting distances are the near-minimum (two blocks),
near-mean (five blocks), and edge of the station area (10
blocks). The plot clearly shows that for stations already
further from the LLR, changes to the walking distance

Figure 7. Walk length and weekly transfers plot.
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have diminished effects. Changes among nearer stations
have significantly stronger effects, but can be consider-
ably more varied. This plot also shows that regardless of
controls included, the simulated differences based on dis-
tance are not significantly different from one another. In
other words, regardless of which controls are in the
model, logarithmic distance is a very strong explanatory
variable for weekly transfers.

Looking more closely at distance along with grade
and vehicular speed, Figure 9 shows the marginal effects
for wkLen, wkGrade, and wkMaxSpd on weekly transfers
for each of the three models. One ‘‘simple’’ model con-
tains just the transfer walking route variables and log dis-
tance (see column Walking route in Table 3). The other
two models are the final ‘‘full’’ model with log distance
and one full model with linear distance. For reference
and context, the mean weekly transfer ridership is 140.

First of all, the log transformation clearly improves
the model significantly (see previous discussion about
Figure 7). There is clearly not a linear relationship
between distance and weekly transfer pairs. The confi-
dence intervals of both log distance models are tighter,
and based on the effects they are significantly greater
than 0 (0.14–0.27), while the linear distance effect is
effectively 0, since one could draw a straight flat line
within its confidence interval (‘‘Lin’’ model in Figure 9).
Furthermore, the full model shows a slightly stronger
drop off with walking distance compared to the simple
model. This suggests that the other variables included
helped explain the increased ridership implied by the sim-
ple model more effectively.

Next, the walking grade plot suggests strong agree-
ment between all models. Effectively, all three models
exhibit the same effect of walking grade on transfers.
For reference, Seattle’s mean walking network grade is
3.9% and the median is 2.3%. Among the data, walks
tend to average around 3.3% with a median of 2.7%—
not far off from the rest of the city. From the second plot
in Figure 9, it is apparent that transfers drop off pretty
quickly around a 3% or 4% grade before leveling off.
Finally, the maximum vehicular speed plot of Figure 9
also suggests a lack of significant difference in this vari-
able among the three models. However, only two of
these—the log distance models—are effectively 0. The
linear distance model shows a possible slightly negative
slope. Regardless, maximum vehicular speed (wkMxSpd)
is clearly the weakest of the three variables, despite the
thought that it may have some deterrent effects on trans-
fer volumes because of a perceived reduction in walking
safety. By comparison, the walking distance (wkLen)
demonstrates the strongest effect on transfer volumes.

The full and final model fit only included the percent-
age of ORCA youth riders at both the Link station and
on the originating line. As covered in the Model Building
section, only youth cards were selected because of multi-
collinearity. Youth ridership can serve as a proxy for
healthier and younger riders—who tend transfer more
willingly (2). Similar studies refer to health not only as
lacking a disability, but also as a greater likelihood of
engaging in physical activity (2). To more closely exam-
ine the effects each ORCA card type might have on the
model, a separate model was fit for each of the other
non-adult cards: disabled, senior, and LIFT. The results
were used to simulate expected transfers given a change
within the ranges of each user type found in the data. In
these plots, results are only focused on interpolation, not
extrapolation. It is unlikely that ridership would diverge
considerably from existing observations, so extrapolating
beyond these ranges was deemed unnecessary. This
was done for each card type at both the destination Link
station and the originating line, and is presented in
Figure 10.

Based on Figure 10, some user groups appear to have
limited impact on transfer volumes. For example, dis-
abled ORCA ridership at both the LLR station and ori-
gin line levels appear to has a limited effect on transfer
volumes. At the origin line level, the effect of disabled
riders on transfer volumes was significant at a 0.01 level,
but was weaker than that of youth ridership’s effect
(.09 6 .06 compared to .12 6 .04). Similarly, senior
ridership at the origin line level was significant at the
0.01 level, while it was also very similar in effect com-
pared to youth ridership (.16 6 .08). However, the range
of senior ridership proportion on origin bus lines was
smaller than that of youth riders (1.4%–8.8% compared

Figure 8. First differences in transfer ridership after moving a
station one block closer than the given starting position for each
model (with 95% CIs).
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to 0.8%–22.7%). In all cases, the impact was not signifi-
cantly different between the origin line and Link station,
even if one was considered significant.

The group of riders most similar to youth appears to
be LIFT (Figure 10). Higher proportions of LIFT riders
also seem to explain higher transfer ridership, especially

at the LLR station level (.16 6 .12). This effect was both
statistically significant at the .01 level and possibly stron-
ger than the effect of youth ridership at the LLR station
(.05 6 .04), although the confidence intervals overlap
suggesting this difference may not be significant at the
.05 level. It is possible that LIFT users are transit-captive

Figure 9. Comparison of expected transfer volumes given changes in walking route characteristics for the simple model (only walking
route variables) and the full models with either a logarithmic walking distance (log) or a linear walking distance (lin).

Figure 10. Comparison of expected transfer volumes given changes in rider composition at the Link Light Rail station and on the origin
bus line.
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at higher rates than other user types. This would support
the idea that Link stations with a greater proportion of
LIFT users are more likely to have higher transfer
volumes, potentially connecting to transit-captivity as
low-income users are forced into making transfers
regardless of convenience because of more limited travel
options compared to middle- and higher-income riders.
In any case, using youth ridership improved the model
goodness-of-fit more than any of the other rider groups
alone. Both the AIC and the BIC of the youth models
were lower than any of the other three models tested.

Conclusions

Findings

Based on this study and the referenced work, walking
distance between stations is a notable barrier to effective
and convenient transfers. Along with distance, both the
mean and maximum slope of a walk can influence
would-be transfers negatively. However, using vehicular
speeds to gauge perceived safety did not offer as clear an
effect in this study. While smartcards are designed to at
least make the transferring experience more clear and
efficient, these physical barriers continue to affect per-
ceptions and actions related to transferring.

With regard to equity, it is clear that users with lim-
ited mobility or disability are not transferring at the
same rates as other users. This could partially be because
of a general aversion to transfers or high physical bar-
riers caused by Seattle’s innate hilly topography, but is
directly tied to these users’ limited mobility. Conversely,
at stations with higher proportions of low-income and
youth users, transfers are more common according to
the model. These stations in practice include Mount
Baker, Othello, and Rainier Beach, which all have above
average youth and LIFT ridership. This suggests some
level of potential transit-captivity for LIFT users. The
considerable increase of transfers among stations with
high youth ridership is an expected confirmation of
survey-based research that considered youthfulness and
health as explanatory variables for transfers.

Planning Implications

In response to these findings, there are a few potential
planning implications for practitioners in the region to
consider. Clearly, station proximity plays a large role,
but cannot always be adjusted to the extent necessary
because of other factors. However, given the effect of
vehicular speed in some models, it is worth considering
identifying transfer routes where vehicular speed may
pose a perceived barrier. Finally, in planning future sta-
tions, planners should consider the street networks in the
surrounding areas. Placing stations as close to grid-like,

dense, and non-circuitous networks helps support
increased transfers, as routes between stations are likely
easier to follow in these networks because of their order.
In less dense regions, mobility hubs could provide sup-
port, and these hubs could offer amenities such as real-
time updates on arrivals and departures.

When considering different user groups, supporting
low-mobility users may simply be a case of finding
crucial transfers and reducing the proximity for their
connections. Other solutions might include more
demand-responsive measures to eliminate the need for
inconvenient and difficult transfers, where possible. In
the case of low-income users, ensuring that transit-
captive populations have access to frequent and afford-
able transit that mirrors their schedule is important.
Seattle’s current network is focused considerably on
first-shift commutes. Making sure that lines serving
lower-income neighborhoods are responsive to their
potentially different needs in span (the hours per day of
service), frequency, and location are crucial. Span, in
particular, becomes relevant when considering many of
these workers are second- and third-shift workers, a time
period when the frequency and convenience of Seattle’s
transit network is comparatively limited.

Future Research

Future studies on this topic could incorporate ridership
surveys in the region to validate or expand on the topics
covered by this study. A combination of both observed
data and stated preferences could help elucidate the
reasons for certain barriers and whether they line up
with perceptions. Potentially, using more precise data
on user groups’ transfer habits could expand on the
briefly discussed equity questions brought up in this
study. Unfortunately, the limitations of our data pre-
vent us from making much more than exploratory
inferences about the behaviors of potentially transit-
captive populations; however, one could apply more
granular demographic data to better assess the beha-
viors of transit-captive populations where available, as
this was a clear limitation of the data used in this study.
Other possibilities include looking at the stations them-
selves and their amenities to describe whether these
have any effect on transfers. An examination of trans-
fers from the Link or including other modes is also a
possibility for future studies.
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