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The demand for goods and services is rapidly increasing in cities, in part due to the rise in

online shopping and more varied delivery options. Cities around the world are experiencing

an influx of goods pickup and delivery activities. The movement of goods within urban

areas can be very constraining with high levels of congestion and insufficient curb spaces.

Pick-up and delivery activities, specifically those that are out of vehicle activities, encom-

pass a significant portion of urban goods movement and inefficient operations can negatively

impact the already highly congested areas and truck dwell times. This dissertation aims to

provide insights and data-driven approaches to support freight plans in various cities around

the globe with a focus on urban freight deliveries. To accomplish this goal, this dissertation

first proposes to discover the current delivery process at the final 50 feet by creating value

stream maps that summarize the flow of delivery activities and times, time variations be-

tween activities. The map will be based on the data collected from five freight-attracting

buildings in downtown Seattle. Secondly, this research explores contributing factors asso-

ciated with dwell time for commercial vehicles by building regression models. Dwell time,

in this study, is defined as the time that delivery workers spend performing out-of-vehicle

activities while their vehicle is parked. Finally, this dissertation predicts total time spent at



the final 50 feet of delivery, including dwell times and parking-related times through discrete

event simulations for various “what if” delivery scenarios. Multi-objective simulation-based

optimization algorithms were further used to discover the optimal numbers of parking and

building resources (e.g. number of on and off-street parking capacity, number of security

guards or receptionists). This aims to better understand how increased deliveries in urban

cities can impact the cost distributions between city planners, building managers, and deliv-

ery workers. This will also identify the areas for improvement in terms of infrastructure and

resources to better prepare for the future delivery demands based on various scenarios.
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Manali Sheth, Anna Alligood, Dr. Andisheh Ranjbari, Caleb Diehl, Katie Ward, Jennifer

Ross from the Supply Chain Transportation and Logistics Center. For both technical and

personal supports, I thank my colleagues from the Human Factors and Statistical Modeling

Lab: Dr. Ali Ajdari, Steven Hwang, Mayuree Binjolkar, Huizhong (Edith) Guo, Jundi Liu.

Most importantly, I want to thank my parents for giving me the strength to reach for

my dreams and showing me the world as a place filled with great opportunities. I could

not have asked for better parents or role-models. Last but not least, I am grateful for my

beloved husband for his continuous love, support, and encouragement along the path of my

academic pursuits.

v



DEDICATION

To my beloved husband, Justin Ham,

my dear parents, Mr. Hyun Suk Kim and Mrs. Hyun Sook Choi,

and my big brother, Dan Kim for their endless love and support

vi



1

Chapter 1

INTRODUCTION

The demand for goods and services is rapidly increasing in cities, in part due to the rise in

online shopping and more varied delivery options. Cities around the world are experiencing

an influx of goods pickup and delivery activities. The additional related traffic has added

pressure to already congested urban roads. Package delivery services are taking a large

portion of the logistics sector [21]. Apart from long distance intercity freight movements,

the final 50 feet of urban freight delivery involves various activities from loading/unloading

goods to pick-up and delivery operations, serving the end customers [116]. This final 50 feet

of a supply chain may be more or less than 50 feet but the term of the final 50 feet represents

such activities which can be complex and costly, accounting for up to 28% of a product’s

total transportation cost [65].

1.1 Problem statement & Background

The focus of most urban freight research has been on vehicle mobility such as freight demand

forecasting and traffic management. This has led to a lack of understanding of fundamental

aspects of the urban goods movement, such as pick-up and delivery activities within the

building (vertical movement) [89]. The delivery process does not end until the package is

delivered to the final customer. The processing time spent outside of the vehicle (i.e. dwell

time) can be much longer than the driving time, as much as 87 % of the entire urban freight

delivery process [13, 16]. Analysis and documentation of the out of vehicle activities per-

formed by various types of delivery workers are limited, and there is a sparsity of data to

examine the overall system. Understanding urban freight deliveries in the final 50 feet is

particularly difficult because factors influencing dwell times are often proprietary to inde-
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pendent private companies, and are therefore, not shared with researchers and city planners.

For this reason, most traffic and parking policies overlook the complexity of urban freight

delivery activities. An in-depth analysis of the driver’s delivery process and performance for

the final 50 feet of the delivery process plays a vital role in understanding and improving

urban freight delivery.

Understanding the vertical goods movement within the building and dwell times asso-

ciated with urban goods deliveries are important because they can directly influence the

roadway capacity and performance. The lack of curbside space, due to excessively long stays

by delivery workers, could increase urban congestion as other delivery vehicles circle the

city blocks while looking for parking spaces [129]. Vertical movements can also encompass

non-value added time or time that unnecessarily increases the overall delivery time with

no corresponding benefit to the customers [49]. These factors can cause negative cascading

impacts on road congestion, adding costs and pressures to the trucking industry, building

management, and city officials.

Freight movement is changing rapidly and it is essential to understand the process flow

of goods globally, regionally, and locally to develop operations and infrastructure that are

ready to meet for future demands. This research focuses on the movement of goods locally

and more specifically within freight-attracting buildings in downtown Seattle. There has

been an increasing demand for deliveries in downtown areas, but there is limited space with

which to move, both structurally and operationally. Insights gained from this research can

be expended and scaled to be used in the decision making process for urban freight policies

in many cities.

1.2 Study purpose & Research questions

This research aims to provide insights and approaches that are based on analysis of data

to support freight plans in various cities around the globe with a focus on urban freight

deliveries. To accomplish this goal, three main research questions were developed. The

research questions were developed based on the need for a better understanding of the urban
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freight system to improve the decision making process for future urban freight policies. The

results from first and second research questions will be key components to design and validate

the simulation model in the third (final) chapter as shown in 1.1.

Figure 1.1: Three main research questions

1.2.1 Research question 1: What are the current delivery processes in the final 50 feet?

The focus of this research question is on the Discovery of the process associated with the

final 50 feet of the urban freight delivery using value stream mapping. This chapter provides

value stream mapping of delivery activities, delivery times, time variations between activities

based on the data collected from an office building in downtown Seattle.

1.2.2 Research question 2: What factors from the final 50 feet of delivery processes influence

dwell times for commercial vehicles?

The focus of this research question is on Exploration contributing factors associated with

dwell time for commercial vehicles using statistical models. This chapter provides statistical

models with explanatory variables based on the information gathered from the first research

question. The models can provide insights on the magnitude of influences of each factor on

dwell times, which could help the cities on developing policies and priorities that are specific

to delivery characteristics.
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1.2.3 Research question 3: How can we improve building & parking infrastructure to meet

future delivery demands?

The focus of this research question is on Prediction & Optimization of the cost distribu-

tion between delivery workers, building managers, city planners with increasing numbers of

deliveries in urban buildings. By controlling the number of building and parking resources,

our model aims to minimize the costs for not only the managers (e.g. building managers or

city planners) who plan infrastructure operations but also the users (e.g. delivery companies)

who perform deliveries at the infrastructure. This chapter introduces the simulation-based

multi-objective optimization (SMO) approach using various “what if” delivery scenarios.

First, a discrete event simulation which is built based on the value stream map from the

first research question, individual dwell times for each commercial vehicles can be estimated

including long wait times in queues and processing time for different delivery scenarios. The

model is then validated with the dwell time model which is a product of the second research

question. Finally, multi-objective optimization algorithms are used to provide information

on the optimized infrastructure resources (e.g. number of on and off street parking capacity,

number of security guards or receptionists) that can be ready for the future years based on

various scenarios.

1.3 Organization

The dissertation is organized as follows:

The next chapter provides a general overview of the final 50 feet of urban freight deliveries

and presents the literature relevant to this dissertation work.

Chapter three describes the data collection method for five urban buildings in downtown

Seattle, USA.

Chapter four introduces the lean philosophy and value stream mapping (VSM) approaches

to examine the delivery process flows in an office building in downtown Seattle. These

approaches are used to identify areas of improvement, which can enhance the overall quality
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of service and work performance.

Chapter five develops statistical models that explores factors associated with dwell time

for commercial vehicles. The models provide insights on the levels of influences of each

factor on dwell times, which could help the cities on developing policies and priorities that

are specific to delivery characteristics.

Chapter six investigates the impacts of increasing numbers of deliveries in urban buildings

using discrete event simulations in terms of costs for delivery workers, building managers, and

city planners. Multi-objective optimization algorithms are then used to provide information

on the optimized infrastructure resources (e.g. number of on and off street parking capacity,

number of security guards or receptionists) that can be ready for the future years based on

various scenarios.

The last chapter presents the key findings from this research, highlights their contribution,

and present areas for future research
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Chapter 2

LITERATURE REVIEW

This chapter provides an overview of the final 50 feet of urban freight deliveries and

presents the literature relevant to each research area; 2.1) Discovering of urban freight

delivery process associated with the final 50 feet, 2.2) Exploring contributing factors as-

sociated with dwell time for commercial vehicles, 2.3) Optimizing building and parking

resources to efficiently manage increasing demand for deliveries in the future.

2.1 Urban freight delivery processes associated with the final 50 feet

Numerous studies regarding the “last mile” of urban freight deliveries have been conducted

while research in the final 50 feet of the delivery processes is still scarce. Although urban

freight delivery may vary by the characteristics of each city, there are activities that are

observed regardless of the delivery type (e.g., loading goods, checking in, maneuvering within

buildings). It is therefore important to understand how operations across various urban

freight deliveries can contribute to congestion and affect the overall quality of life for residents,

retailers, freight carriers, and government agencies.

Allen et al. [15] conducted a comprehensive review of 162 freight studies (from the 1960s

to 2008) in 18 countries. The majority of data were based on freight operations from the UK,

followed by the US, the Netherlands, Germany, and Italy, indicating active efforts worldwide

on improving the urban freight system. The review noted three primary purposes of these

freight studies [15]:

1. to gain an understanding of urban freight operations,

2. for policy and decision-making, and

3. for use in urban freight modeling.
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The review also highlights a need for a systems approach to measure inefficiencies and to

provide better communication between the public and private entities for the development

and implementation of freight plans and policies [110, 16]. A more quantitative approach

can be achieved with our study method, which can also provide a useful tool for highlighting

the impact of freight transport movements to stakeholders, either directly (receivers, ship-

pers, and carriers) or indirectly (city authorities, and residents). Rhodes et al. also state

that quantifying and addressing both horizontal and vertical “last mile” inefficiencies are

important from a planning perspective[129].

Value stream mapping (VSM) is an effective tool for identifying system efficiencies and

has been used in industries related to manufacturing and health care services [139, 130,

157]. The urban freight delivery process consists of many activities and parties, with few

standardized processes. Using a systems approach provides insight on dwell times and failed

deliveries by decomposing the delivery process. Cherrett et al. emphasized the importance

of understanding freight vehicle dwell times (i.e. the times the vehicle remains stationary)

because shorter dwell times could reduce traffic delays and minimize the environmental

impacts of freight [38]. A more in-depth understanding of vehicle dwell time was proposed

by Allen et al. [13] with 12 steps of activities performed by a goods vehicle driver when

making a delivery. The first research question of this dissertation examines the final segment

of the delivery process and considers the many steps associated with the delivery tasks.

One factor that impacts dwell time is the parking location. The parking options can be

classified as on-street, off-street parking, and alternative options such as double parking or

illegal parking [33]. The decision of where to park may be influenced by the package size

and weight, and distance to the recipient’s location [33]. The existence of off-street loading

facilities does not necessarily mean they are always used [38]. According to Cherrett et al.’s

review of the recent UK studies, the proportion of on-street and off-street parking varied

by the type of location served [38]. Deliveries made in shopping centers tend to include a

higher percent of off-street parking facilities while deliveries made to local shops on the street

use more on-street parking [38]. Based on the parked location, the levels of conflicts with
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pedestrians, bicyclists, and other vehicles can be different, which may cause extra delivery

time.

Understanding the total delivery time as well as the time for each delivery task is im-

portant when imposing time restrictions for parking and freight loading facilities [110, 109].

Too little time given at the loading facilities may lead to excessive enforcement using fines

for parking/loading, clamps, and towing-away. These can impact delivery workers’ operation

significantly[13]. Too much dwell time can be an indicator of an inefficient process with fewer

on-time deliveries.

Another factor that may influence dwell time is the time associated with using elevators.

Pivo et al. state that drivers would worry less about the congestion if slower traffic could be

offset with faster elevator service [127]. Delivery workers are required to use freight elevators

in many office buildings no matter the size of the delivery. The bottleneck may occur because

the number of freight elevators in the office buildings are limited to one or two [127]. Morris

points out the lack of requirements regarding the number of freight elevators in commercial

buildings of many American cities, including Atlanta, Boston, Chicago, Dallas, New York

and Seattle [116]. Even though each building has different freight elevators, this study can

provide insights on how much time associated with elevators can take up in the total delivery

time for similar office buildings in other urban areas.

Failed deliveries are another central issue in the urban freight system. Failed deliveries

are very costly as the driver needs to return (sometimes multiple times) before a successful

delivery. A 2016 Interactive Media in Retail Group (IMGR) report in the UK showed that

failed deliveries can cost up to $780 million (equivalent to $1 billion US dollars) [113]. The

cost burden for failed deliveries has prompted interest in solutions that can help streamline

the final segment of the delivery process.

2.2 Commercial vehicle dwell time

Commercial vehicle dwell time can be examined in terms of the challenges created by the cur-

rent commercial vehicle parking systems, factors related to dwell time, and ways to improve
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commercial vehicle parking systems.

2.2.1 Challenges created by the current commercial vehicle parking systems

With the explosion of the e-commerce market, demands for dedicated delivery services to

the end customer have increased rapidly [112]. This has resulted in high frequencies of

urban freight deliveries in many cities, aggravating the fragmentation of freight flows [92].

When there are not enough legal parking spaces for commercial vehicles, delivery workers

are left with options such as cruising until finding other parking spaces or double-parking in

unauthorized areas. A study conducted at a busy commercial street in Istanbul with a high

parking occupancy rate showed that a vehicle parked for an hour can cause 3.6 other vehicles

to cruise for parking. The authors pointed out that the current calculation for congestion

costs does not account for the costs of cruising for parking. The external cruising cost for

parking can be estimated as approximately equal to the external congestion cost in one

trip, which is a significant contributor to congestion [79]. Unauthorized parking behavior

is another growing issue that is caused by a scarcity of commercial parking spaces in many

cities. Parking fines in Toronto have been increased 70 percent between 2006 and 2009, with

an estimated $ 2.5 million CAD paid by FedEx, United Parcel Service, and Purolator in 2009

[122]. In 2018 in NYC, where parking spaces are extremely limited, FedEx and UPS incurred

$ 14.9 million and $ 33.8 million respectively in parking fines [23]. Studies have shown that the

delivery vehicles pay $ 500 to $ 1000 per truck per month for parking fines in New York City

[74]. Although parking fines are imposed to discourage unauthorized parking, many delivery

companies allocate costs for parking fines as a part of doing businesses in urban areas [156].

In 2013, data collected at over 60 locations in Chicago showed that trucks parked illegally

28.7 percent of the time, far more than 3 percent of illegal parking rate for passenger vehicles

[87]. In 2018, commercial vehicle parking observations in downtown Seattle showed that 40

percent of commercial vehicles (with delivery vehicles constituting the biggest share) parked

in unauthorized locations including passenger vehicle loading zones (PLZs), the middle of

the road, tow-away zones, and no-parking zones [63]. With increasing challenges created
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by commercial vehicle parking systems in cities, it is important to understand the factors

correlated with dwell time in order to explore possible improvements to the current parking

policies.

2.2.2 Factors related to commercial vehicle dwell time

Dwell time for commercial vehicles (also referred as parking duration or service time) is

not determined by parking management or enforcement policy, but rather by operational

constraints [82]. It is challenging to obtain detailed data and to account for variations in

influencing factors. To better understand the urban freight system, researchers have gathered

empirical data on dwell time. Morris (2004) conducted a time and motion study at loading

docks at six commercial office buildings in the central business district of New York City

[115]. Sixty percent of observed deliveries were made in the morning, and the average truck

dwell time was found to be 31.5 minutes, ranging between 22 minutes and 48 minutes. Kim

et al. (2018) observed an office building in the Seattle central business district that had an

average truck dwell time of 20 minutes, ranging between 9 minutes and 43 minutes. The

authors further broke down the total truck dwell time into time spent for entering, delivering

and exiting, which represented 35 percent (7 minutes), 40 percent (8 minutes), 25 percent

(5 minutes), respectively, of the average total truck dwell time [90]. Cherrett et al. (2012)

collected studies in United Kingdom (UK) that studied dwell time for loading and unloading.

The mean lengths of dwell time were suggested based on the types of commercial vehicles:

30 minutes for the average articulated heavy goods vehicle (HGV) delivery, 20 minutes for

rigid HGV delivery, and 10 minutes for vans and cars [38].

Allen et al. (2000) identified several factors that influence dwell time, including prox-

imity between the delivery vehicle and final customer, parked location (off-street vs. on-

street), type and size of the product, the number of people performing the delivery, and a

requirement to receive a signature from the recipient [13]. Schmid et al. (2018) categorized

factors influencing dwell time as intrinsic and extrinsic factors. They defined intrinsic fac-

tors as delivery-specific characteristics such as weight, volume, and value of delivered goods;
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the number of delivery workers; and the number of businesses served [138]. Extrinsic fac-

tors included environment-dependent characteristics such as parking capacity, accessibility

of parking sites, and parking enforcement [138]. The authors addressed the difficulties of

obtaining intrinsic factors and used only extrinsic factors in their delivery vehicle parking

duration study.

Many factors have been shown to affect the dwell time of commercial vehicles. Zou et al.

(2016) used the Cox proportional-hazard model to show that arrival time, commodity types,

vehicle types, and parking location all affected the on-street parking duration of commercial

vehicles in New York City [165]. Dalla Chiara and Cheah. (2017) used the log-normal

regression for dwell times in the loading bays of two retail malls in Singapore. Factors that

were correlated with dwell time included the percentage of vehicle capacity filled with goods

prior to any pick-up/delivery, pick-up activity, the ratio of goods volume to the number

of workers, time spent waiting for parking, and delivery vehicle type [44]. Schmid et al.

(2018) used a parametric survival model to predict parking duration for commercial vehicles

using explanatory variables such as types of vehicles, types of items delivered, legal or illegal

parking, and observation locations. Different lengths of dwell times were related to different

types of items delivered and types of parking. For example, illegal parking occurred for only

a short period of time [138]. Based on the past literature, our study included factors that

are known to be related to commercial vehicle dwell time as the explanatory variables in the

analysis.

2.2.3 Efforts to improve commercial vehicle parking

Cities worldwide have applied various parking policies to improve commercial vehicle parking

systems. We explored those policies that involve three major areas of the systems; parking

time, spaces, and operations.
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Parking time

While most commercial vehicle parking limits are between 15 and 30 minutes [118], dwell

times are varied based on individual delivery characteristics. Cities like Seattle and San

Francisco are making efforts to measure vehicle dwell times using real-time sensor technol-

ogy and to improve visibility of available parking spaces through mobile applications [34].

In some cities, commercial parking is restricted to a certain time of day. The New York

City Department of Transportation (NYCDOT) is implementing delivery windows in the

morning, as 65 percent of deliveries occur before 12:00 PM [122]. In Philadelphia, Penn-

sylvania, loading zones along the Walnut Street retail corridor require businesses to receive

deliveries before 10:00 AM [162]. The American Transportation Research Institute’s 2016

parking survey revealed that 61.6 percent of drivers reported that time of day affects truck

parking availability [80]. Holguin-veras et al. (2011) introduced off-hour deliveries in the

New York City metropolitan area. Using commercial vehicle dwell time (i.e., service time)

as a performance measure, the study demonstrated that shifting 20 percent of freight traffic

to night time would minimize the number of inefficient parking locations [73]. Commercial

vehicle dwell time has been considered to be crucial information to provide insights into

the delays associated with making deliveries [86, 38]. Jaller et al. (2013) also pointed out

that parking availability during certain periods of time will depend on turnover, which will

ultimately be affected by average commercial vehicle dwell time [81].

Parking spaces

Cities are making efforts to improve physical spaces for commercial vehicles by increasing

and relocating commercial parking spaces. Philadelphia is reserving 80 to 100 feet as all-day

loading zone in busy downtown [34]. In Washington, D.C., USA, the District Department

of Transportation (DDOT) partnered with the Downtown Business Improvement District to

create a ‘Downtown Curb-space Management Plan’ to improve commercial vehicle loading

zones (CVLZs) [85]. As a part of the plan, CVLZs were relocated to the end of each block
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face wherever possible to make parking easier for commercial vehicles and the length of load-

ing zones on K Street was extended from 40 feet to 100 feet to increase commercial parking

capacity [85]. However, Campbell et al. (2018) found that despite the ease of parking ma-

neuvers, locating the parking at the end of the block can increase parking time by about 4%,

as the parking is farther away from the delivery locations [35]. New York City’s ‘Commercial

Vehicle Parking Plan’ recommended providing additional curbside spaces for commercial ve-

hicles [152]. In Midtown Manhattan, where commercial activities are concentrated, CVLZs

were added on the streets between 43rd and 59th and Fifth Avenue and Seventh Avenue and

were later expanded to cover the additional streets between Second and Ninth avenues [152].

Spatial limitations on loading and unloading goods could potentially lengthen dwell time as

delivery workers may face conflicts with other roadway users (e.g., pedestrians, bicyclists,

and other vehicles). Cities’ efforts to relocate and expand the lengths of CVLZs could help

reduce dwell time, in addition to increase parking capacity.

Parking operations

Cities are also implementing ‘Shared Spaces’ or ‘Flex Zones’ to accommodate commercial

vehicle parking. The concept of ‘Flex Zones’ allows the areas within the public rights-of-way

to be used by different permitted users according to the time of day. In limited city spaces,

flex spaces can be shared with multiple roadway users based on their activities. As a part

of ‘Curb Management Strategies’, Washington D.C. has 28 dedicated pick-up/drop-off zones

for ride-sharing cars and commercial vehicles, expected to be added more throughout the

city [34]. In Barcelona, Spain, variable message signs (i.e. electronic traffic sign that shows

different messages based on times) were implemented to allow 700 loading zones between 8:00

AM and 2:00 PM [126]. Despite the high capital costs required, the system gained popularity

among residents, as it reduced travel time at study areas by 12 to 15 percent [126]. The city

of Seattle implemented ‘Flex Zones’ at areas where passengers loaded and unloaded from

transit and ride share services, or delivery goods were being loaded or unloaded to/from

commercial vehicles. The Flex Zone functions (e.g., mobility, access for people or commerce)
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were categorized and prioritized on the basis of surrounding land uses (e.g., residential,

commercial & mixed use, industrial) to “safely and efficiently connect and move people and

goods to their destinations while creating inviting spaces within the right-of-way” [5]. In

these examples, assigning shared space on the basis of the needs of different roadway users

improved the management of limited curbside spaces.

The second research question of this dissertation aims to contribute to a more data-driven

approach before such dynamic parking policies are implemented. By identifying explanatory

variables correlated with dwell times for commercial vehicles, policy makers can better allo-

cate parking space and time on the basis of users’ needs.

2.3 Recent trends in shopping and delivery methods and simulation/ opti-
mization tools

In preparation for future urban freight infrastructure designs, it is important to consider

changes in people’s shopping behaviors and various delivery methods, stimulated by ad-

vanced technologies. This literature review first explores recent changes in shopping experi-

ences and delivery methods to better understand people’s expectations and recent trends in

urban freight deliveries. The second part of this literature review includes investigation into

simulation and optimization tools that are widely used in transportation research.

2.3.1 New shopping experiences and delivery methods

Changes in shopping experiences

Embracing new technologies, retailers are constantly making efforts to revolutionize shopping

experiences for their customers. For an optimal mobile user experience, corporations are

adopting technology innovations such as progressive web applications and accelerated mobile

pages [141]. Voice assisted devices such as Amazon Alexa and Google Assistant are another

way that shopping has been made easier. The artificial intelligence and machine learning

technology in these devices allow customers to purchase goods and groceries online with

improved customer services [140]. Loup Ventures expects that 75 percent of U.S. households
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will have smart speakers by 2025 [6], which may have a ripple effect on increasing online

shopping behaviors. Retailers have recently been trying “offline to online” (also called O2O)

services, which open up the store for display purposes only, allowing customers to try physical

goods offline but complete buying/selling online [153]. For example, Nike’s new physical

stores allow users to try exclusive products, customize products onsite and partake in fitness

tests, experiences that online shopping cannot offer [78]. In another example, Nordstrom

expanded its “Reserve Online and Try in Store” services to nearly 40 stores across the U.S

in 2017 after a successful pilot project in the fall of 2016 [121]. With rapidly changing

advancement in technologies, customers’ expectations for shopping are changing, most likely

leading the demands for goods and services in urban areas to increase.

In 2020, the global coronavirus (COVID-19) pandemic made digital online shopping the

top alternative to crowded brick-and-mortar stores. Because of limited public transporta-

tion, food shortages, and reduced hours at supermarkets and grocery stores during pandemic

lockdowns, food shoppers were particularly impacted significantly. Despite the difficulties,

developed countries such as the U.S. maintained access to food through online e-commerce

platforms [36]. With a potentially lasting effect, the rate of e-commerce adoption increased

during the pandemic [19]. Gatta et al (2020) studied the potential acceptability and adoption

of “e-grocery” (purchase of groceries online), pointing out that changes in such shopping be-

havior would substantially impact how goods reach houses, as buying groceries is a recurrent

activity for any household [60]. While technologies are changing people’s shopping expe-

riences faster than ever, most cities’ infrastructure designs and policies lack rigorous data

collection and scientific approaches. As our simulation and optimization models account for

real-world observations in the final 50 feet of deliveries, we focus on providing data-driven

tools that policy makers can use to better understand the dynamics of current and future

urban freight deliveries.
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Changes in delivery methods

Many logistics solutions have been suggested in the past, including last-mile consolidation,

collection points/drop zones, cargo cycles, crowd shipping, drones, and delivery robots [12,

14, 29, 69]. With various types of logistic solutions, it is important to create appropriate

plans and regulations to effectively manage them.

Researchers have observed urban cargo-hitching initiatives intended to assist in deliver-

ing time-sensitive parcel deliveries and have analyzed their potential performance through

simulations [11]. The concept of cargo-hitching originated from the use of spare capacity

transportation modes to carry freight [149, 135]. Crowd-logistics (e.g., Amazon flex, iMoveit,

Zipments, Postmates, Deliv) is a type of cargo-hitching scheme [108]. Offering speedy de-

liveries, crowd shipping is also considered to be a new means of generating extra income

or subsidizing travel costs (e.g., same-day delivery) [108]. By leveraging spare capacity in

passenger transport modes, transportation network companies such as Uber and Lyft and

conventional taxis (i.e., mobility-on-demand services) have been used to support grocery

deliveries during the COVID-19 pandemic in 2020 [160, 72].

While there are promising benefits of cargo-hitching, occasional carriers (also called “life-

style couriers”) [108] are not professional carriers and therefore may be unfamiliar with

delivery processes or get lost in a building. Although McKinnon (2016) pointed out that

personal interaction between locally based carriers can alleviate the “failed delivery” problem

(when no one is present to receive goods), the failed delivery problem can also be worsened

when carriers are not familiar with delivery processes or building layouts, which may poten-

tially lead to a failure to find the correct recipient [89]. According to an Interactive Media

Retail Group 2018 study, the cost of failed deliveries for retailers, couriers, and consumers

was estimated to be $1.6 billion (equivalent to US $2.1 billion) a year in the United Kingdom

[131]. Inefficient operations at the final 50 feet of the delivery process can also negatively

impact already highly congested areas and truck dwell times [89]. Optimized infrastructure

designs developed with this study’s tools can create more predictable delivery systems with
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optimized resource allocations for not only conventional carriers but also diverse types of

innovative carriers in the future (e.g., crowdsourced, delivery robots).

There is clear evidence that people feel comfortable about using innovative delivery meth-

ods such as crowdsourcing services as alternatives to receiving goods from professional carri-

ers. In six-week trial of crowdsourced deliveries in Finland, the majority of drivers (between

the ages of 17 and 68) were younger (between the ages of 20 and 40) and were motivated

to try out something new [124]. Similarly, another study found that millennial respondents

(between ages 15 and 34) were more familiar with crowd-shipping, and 25- to 44-year-old

respondents were more likely to have tried it [124]. Those who had already tried crowd-

shipping also showed fewer worries about the absence of professional drivers. Other studies

have looked at the potential benefits of crowdsourcing drivers from a social network of cus-

tomers, friends, or acquaintances [48]. This idea aligns with the increasing numbers of

younger shoppers. Young people who have grown up with the internet, shop online more

than not. Mintel (2017) found that 55 percent of people ages 16 to 34, 42 percent of those

ages 45 to 64 and 32 percent of those over 65 have used online shopping [111].

As younger people try new, innovative ways to deliver/receive goods, the use innovative

delivery methods is on the rise. However, these types of deliveries can be challenging from a

management perspective due to additional planning and regulations, parcel fragmentation,

and potential misuse of parking spaces. While urban freight transport has evolved to meet

the demand created by new shopping habits [24], analysis of building and parking designs

that are appropriate for future delivery innovations has been extremely limited. This study

aimed to contribute to closing this gap by creating a framework for building a simulation-

based optimization tool for assessing building and parking infrastructure while minimizing

freight delivery costs for both carriers and planners.
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2.3.2 Simulation and simulation based multi-objective optimization tools

Simulation techniques

Simulation techniques are widely used in much operational research to assist in decision

making for system analysis and improvements [151]. The simulation approach is popular not

only in transportation but also in health care, production lines, and businesses. Simulation

models are useful for understanding complex system flows over time. They are also useful

for testing “what if” scenarios and predicting system performance before any plans have

been implemented. Choosing an appropriate approach among many types of simulations is

crucial.

There are many types of computer-based simulations, such as system dynamics (SD),

agent-based (AB), and discrete-event simulations (DES) [30]. Borshchev and Al (2004)

stated that while SD deals mostly with continuous processes, DE and AB work mostly in

discrete time (e.g., move from one event to another) [28]. This section explores various

types of simulation tools and summarizes our rationale for choosing DES over other types of

simulation tools for our study.

SD simulation, which was developed by electrical engineer Jay W Forrester in the 1950s,

is defined as “the study of information-feedback characteristics of industrial activity to show

how organizational structure, amplification, and time delays (in decisions and actions) inter-

act to influence the success of the enterprise” [56, 57]. SD represents the real-world process as

stocks (e.g., of material, knowledge, people, money), flows between those stocks, and infor-

mation that determines the value of the flows. Because SD stocks do not have individuality

and the SD needs to consider global structural dependencies, SD simulation is best suited for

describing the system behavior as several interacting feedback loops, balancing or reinforcing

them with three to four tools that are very similar to each other (e.g., piston motion) [28].

AB simulation is often called “bottom-up” modeling [136] because AB does not have

global system behavior up front. Instead, behaviors at an individual level are defined first,

and the complex global behavior emerges as a result of many individuals interacting with each
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other, living in some environment together [28]. The big advantage of using AB simulation

is that models can be constructed without knowledge about global inter-dependencies [28].

DES was developed by Geoffrey Gordon, who evolved the idea for the General Purpose

Simulation System and introduced IBM implementations [66]. DES models comprise entities

that enter a system and travel through multiple steps before leaving the system. Each step

represents a discrete timestamp (e.g., event) that alters the state of entities. Each event can

be described as resources and their capacity and efficiency. In DES, entities act as a passive

element of the system, and therefore, the entity will wait until its turn if the resources are

pre-occupied with other entities. In this way, DES incorporates queuing in the model and is

able to discover bottlenecks and measure system performance [97].

The DES model was most suitable for this study as we could simulate delivery workers

(entities) traveling through a building (system), using the building and parking resources

(resources). Through DES, we were interested in learning about the utilization of building

and parking resources under different “what-if” scenarios. DES requires specific data for on-

time distribution for each activity [96]. Fortunately, a complex delivery process and detailed

activities had been documented in a discrete event flowchart with time distributions for

each delivery task during a previous study conducted by Kim et al, 2018 [89]. With this

previously obtained empirical data, we built our DES model with realistic complex stochastic

distributions.

2.3.3 Simulation-based optimization approach in transportation research

Although DES can provide the results of specific “what-if” scenarios based on the com-

plex and stochastic flows of delivery workers, the optimal solution is not guaranteed [151].

Therefore, an additional optimization tool was required to find the optimal solution [10]

even though simulation and optimization have traditionally been considered to be different

approaches in the operational research domain [54]. Numerous recent studies have used the

combination of optimization and simulation tools and confirmed their effectiveness at making

quick decisions about optimal system configurations and complex integrated facilities [151].
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As meta-heuristic optimization can quickly identify good quality solutions, it has usually

been used in combination with DES [54]. When there are multiple-objectives, simulation-

based multi-objective optimization (SMO) can search for trade-offs between several conflict-

ing objectives to find the optimal solutions [46]. Several meta-heuristic algorithms have

been developed for simulation-based optimization, such as the genetic algorithm, scatter

search, pychoclonal algorithm, hybrid algorithm, and nondominated sorting generic algo-

rithm (NSGA II). Among these algorithms, NSGA II is the most commonly used algorithm

for simulation-based optimization [22].

The simulation-based optimization approach has been widely used in transportation and

logistics studies. Optimizing the costs of deliveries has been one popular topic. Yanchuk et al.

(2020) conducted a simulation of cost optimization for package delivery with a combination

of carriers for fast (same day or next day) and lazy (not the nearest day or week) deliveries

[159]. Avici and Selim (2017) used SMO to develop a supply chain inventory management

system by determining suppliers’ flexibility and safety stock levels in terms of inventory

holding costs and premium freight (i.e., expedited shipping with high costs such as airways)

[22].

Transportation routing networks have been another area of popular research using simulation-

based optimization. Poeting et al. (2019) and Simoni et al. (2020) simulated last-mile de-

livery routes to optimize them with delivery robots [128, 143]. Anderluh et al (2019) utilized

SMO to select the best routes given trade-offs between the economic objective of minimizing

delivery costs and the social objective of minimizing the negative impacts of delivery vehi-

cles, such as noise and congestion [20]. Similarly but for transit, Schmaranzer et al. (2019)

designed a complex urban mass rapid transit system by using SMO to minimize the cost of

fleets and maximize service levels (e.g., average waiting time per passenger)[137]. Layeb et

al. (2018) approached scheduling problems in stochastic multimodal freight transportation

systems with a simulation-based optimization model [96].

Optimization approaches have also been applied in selecting optimal locations of facilities

and managing parking systems. Jardas et al. (2020) selected an optimal location for a
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distribution center that would minimize delivery costs by considering the distance between a

start point and the destination [84]. Wei (2020) found optimal network nodes and passages of

urban underground logistics that would minimize logistic time cost, exhaust emissions, and

congestion costs [155]. To determine advanced parking strategies such as dynamic pricing,

Zheng and Geroliminis (2016) applied optimization to reduce congestion and lower the total

travel cost of all users [164].

Although much research has used simulation-based optimization in the transportation

and logistics fields, no study has utilized SMO to optimize building and parking resources,

to the best of our knowledge. On the other hand, research in the fields of healthcare and

production lines has a long history of using simulation-based optimization to determine re-

source allocations for improving system performance. For example, multiple buffer allocation

studies have determined optimal buffer capacities by maximizing throughput rates while min-

imizing total resource capacities for production lines. Motlagh et al. (2019) produced an

extensive literature review on past research that has used buffer allocation problems since

2000 [117]. Since the 1990s, the healthcare field has applied SMO to study the optimal num-

ber of expensive medical devices in an emergency (or surgical) department that can minimize

the costs of medical resources while maximizing service levels for patients (e.g., minimizing

waiting time) [103, 151, 52, 37]. Similarly, SMO can be applied to optimize a city’s parking

and building infrastructure, considering not only the city’s constraints (e.g., limited parking

spaces and costs) but also the costs of delivery workers and building managers. For example,

if the city increases the number of on-street parking spaces simply due to increased numbers

of deliveries, then the queues of deliveries will be transferred to the queues at elevators or

receptionists, pushing the costs from delivery workers and building managers. Conversely, if

city or building managers decrease the numbers of on– and off-street parking spaces without

proper analysis, the cost may be pushed to delivery workers who use the urban infrastruc-

ture. SMO can help reveal the complex relationships among different parties and balance

such ambiguity in parking and building policies.

In this study, SMO was developed to optimize building and parking resources that can
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minimize the costs for three parties; city planners, building management, and delivery work-

ers.

In the previous two chapters of this research, the delivery processes in the final 50 feet and

factors affecting lengthen or shorten dwell times are found with a targeted aim to discover

cascading relationships between building and parking operations. In the last chapter of this

research is to leverage data we found from the previous chapters and apply them to test

whether the current building and transportation infrastructures are ready to meet future

demands for urban freight deliveries using discrete event simulation models and optimization

algorithms.

The third research question of this dissertation aims to understand cost distributions

between delivery workers, city panners, and urban building managers through a discrete

event simulation and optimize building and parking resources that can minimize the costs for

both building managers and delivery workers through SMO. To better prepare for the rapidly

increasing numbers of deliveries in urban cities, this chapter provides insights and data-driven

approaches to optimize resource allocations for the parking and building infrastructures.



23

Chapter 3

DATA COLLECTION

Data collection occurred in five different building types in downtown Seattle, Washington,

USA. We carefully selected different types of buildings to capture the full range of delivery

and vehicle characteristics. The selected buildings included a residential tower, a hotel, a

historical building, an office tower, and a shopping mall.

3.1 Building profiles

Table 3.1 describes key features of the observed buildings: mixed building types, number

of floors, total floor area, and presence of a receptionist. In the building selection process,

observing various types of freight activities at each building was important to collect sufficient

data regarding explanatory variables (e.g., different types of goods, parked locations, vehicle

types, etc.) to examine their effects on commercial vehicle dwell time. Therefore, the selected

buildings were naturally considered to be large with the total floor area between 31k - 92k m2.

These types of buildings are often known as ‘large urban freight traffic generators (LTGs)’

as specific facilities housing businesses that individually or collectively produce and attract

a large number of daily truck trips [83].

Prior to data collection, the researchers conducted site visits to assess each building’s

configuration and freight activities. This helped identify the proper placement and number

of researchers for data collection (see Figure 3.1). Only the office building closed during

weekends, however, we learned that relatively small numbers of freight activities are per-

formed during weekends for other buildings based on the interviews with building managers.

Therefore, the weekends were not observed in our data collection.

For each building, the data collection process occurred over five business days from Mon-
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Table 3.1: Description of observed buildings

Building Building types No. of Total floor Receptionist Observations

ID floors area present (n)

A Residential (98%) 41 89,000 m2 Y 35

Retail (2%)

B Hotel (78%) 21 38,000 m2 Y 29

Residential (19%)

Spa (2%)

Dining (1%)

C Historical Office (93%) 15 31,000 m2 N 29

Retail (5%)

Coffee shops (2%)

D Office (97%) 62 92,000 m2 N 30

Retail (2%)

Dining (1%)

E Office (76%) 25 45,000 m2 N 34

Shopping mall (20%)

Dining (4%)

Total 157
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Figure 3.1: Observed buildings location and configuration
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day to Friday between the hours of 6:30 AM and 3:30 PM. Data collection occurred between

the months of January to March 2017. The data collection team consisted of two or four

people depending on the size of the building. They were trained to observe and collect

data using a customized tablet application [91]. They waited until a commercial vehicle was

parked in either the loading bay or the street curbs near the building. They would then

approach the delivery worker and ask permission to shadow and observe his or her delivery

process. A sufficient number of deliveries were observed at each building type to estimate

the impacts of key variables on dwell time.

3.2 Mobile application development

This data collection application was specifically developed to capture timestamps of each

task that individual delivery workers are performing during their delivery processes [91].

The application included 5 major task categories that were broken down into colors. The

major tasks that occurred within each category were then broken down into task buttons

with different color codes to make it simple to follow:

• Pink: Activities involved with vehicle operation (e.g. parking, driving away, open/close

cargo compartment

• Gray: Repeated activities throughout the delivery process (e.g. walking, talking, call-

ing, organizing goods)

• Green: Loading /unloading goods

• Yellow: Activities involved waiting and taking elevator, escalator, stairs

• Navy: Activities involved delivering goods (e.g. Looking for receivers, receiver signs

for goods, drop off goods, scanning goods)

To collect time-stamps the start of a task, the data collector simply presses on the task

button. The application records the immediate time of tapping and calculates the duration

of each task. The displayed buttons have the name of pre-identified tasks. In addition, data
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collectors can generate new task buttons by typing the names on the input area located at the

bottom of the application if the performed action was not previously defined. The application

allows a very accurate collection of various tasks and durations. The data collector also

captured and recorded the frequencies of failed delivery attempts in the ‘notes’ section by

typing the texts and numbers.

To ensure accurate data collection, the application automatically saves information that

the data collector enters on the application to the web-based database in real-time. In case of

low-network connection or no Wi-Fi, the information can also be stored offline on the mobile

device that can then be uploaded to the web-based database when an internet connection

is restored. This information can be transferred to the database at a later time by pressing

the ‘Export’ button when there is a stable network. The list of collected data includes

Name of building, Name of the data collector, Name of delivery company, Types of delivery

vehicles, Types of goods being delivered, Number of delivery workers, Timestamp, Pictures,

Frequencies of failed deliveries and additional notes.

The user interface of the data collection application is shown in Figure 3.2. The ap-

plication was developed by using Swift programming language in iOS, an operating system

used for mobile devices manufactured by Apple Inc. Different types of buildings can have

slightly different delivery tasks because the delivery processes can be unique to each building

depends on specific building structures and configurations. Therefore, we ensured that pre-

defined task buttons can be easily modifiable and customizable in changing the task names

and numbers of buttons for different building types.

The data collection process has three basic aspects: 1. timeliness of collecting, processing,

and recording data, 2. accuracy and precision of the data collected, and 3. integration of

data for efficiently supporting decision-making [55]. By using the mobile application, all

three aspects could be improved from the conventional data collection methods. First, time-

saving for collecting, processing and recording data could be significant. SQL database can

be synchronized into a table format on a report or be shared in MS Excel format which can

be used in other analyzing tools such as R or Matlab for further analysis.
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Second, the accuracy and precision of the data decreased human error that occurs through

the manual logging of information with pen and paper. Also, the mobile application allows a

data collector to take photos which can be used for quality control of the collected data. Pho-

tos can be shared in the presentations and documentation to assist effective communication

between data collectors and audiences and readers.

The collected data was later used to create a VSM, which visualizes the detailed com-

ponents of the delivery process. The VSM of delivery processes in the office building can

increase the visibility of the logistics process and provide a better understanding of the

delivery operations in urban cities. Such information can be shared to gain information

on delivery times and activities for similar office buildings in other urban areas. As many

customers make purchasing choices based on the quality of services, both carriers and re-

tailers become aware of the importance of improving the quality of delivery services for the

customers. Our VSM approach can, therefore, provide vital performance metrics to make

crucial decisions in various companies’ policies. [95]. The ultimate goal of this approach

was to ensure the applicability of VSM in the delivery operations in urban cities using our

uniquely designed mobile application.
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Figure 3.2: The user interface of the mobile application
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3.2.1 Standardization

Prior to the start day of data collection, data collectors conducted a pilot test at the selected

office building. During this pilot test, they learned how to use the application and became

familiar with the application and the unique delivery operations. Also, they learned the

characteristics of the building structures such as parking facilities and locations of freight

elevators. Based on the pilot test results, the task buttons were created and ordered the

process steps.

3.2.2 Reliability

To ensure the reliability of using the mobile application for the generation of VSM, we com-

pared the results from the four data collectors for using the mobile application. The data

collectors measured the same length of times for various delivery activities with the appli-

cation by watching a pre-recorded video of delivery operations. intraclass correlation (ICC)

was used to assess the reliability of data collected by the application. 98% intraclass correla-

tion was observed for using the mobile application, indicating the mobile application method

showed very low variations in collecting the same time data between the data collectors. This

indicates that the mobile application can be understood clearly to different data collectors

and improve the method of collecting accurate time data. Questionnaires regarding the in-

tuitions of the mobile applications and general feedback from this test assisted shaping the

final mobile application. Data collectors showed a preference for using the mobile application

as compared to the pen and paper method. The main reasons included the elimination of

the need for manual data entries on paper and simplicity of pressing the button to capture

all the information automatically.

3.3 Summary

The main objective of this chapter was to develop an appropriate tool for collecting quan-

titative performance time measures for the final segment of delivery operations. Delivery
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activities inside of the buildings share similar standardized processes such as loading and

unloading goods, pick-up and delivery operations, and taking freight elevators. By creating

VSM with time measurements, time spent for each delivery activity could be better under-

stood and also compared among urban buildings. Some delivery activities could be also

unique to different buildings based on various delivery policies within the buildings or build-

ing conditions. In a way to observe and measure the detailed delivery activities of an office

building in downtown Seattle, a mobile application was uniquely designed for data collectors

to shadow individual delivery workers within the building. By using this easy-to-use mobile

application, data collectors successfully captured times for each delivery task and recorded

data in real-time data was used to creating a VSM which provides the overall process flow

of urban deliveries. Quantifying delivery operations by using our systematic VSM approach

can provide insights on the current delivery processes in the cities, which can be better ac-

counted for the future urban policies. In carriers’ point of view, VSM can provide strategies

that they can learn from other delivery companies when the same actions are performed in

more effective ways.

Some limitations were associated with the data collection process, as the delivery workers

were aware that they were being watched by the data collectors although data collectors

minimize any interactions with the delivery workers. In some cases, they rejected data

collectors to follow them, resulting in potential selection bias. One approach to resolve this

issue would be to use video recorders where the delivery workers may not recognize the fact

that they are being monitored. Another possible approach is to position each data collector

to monitor specific activities in different locations such as next to the elevator at the lobby,

or at the mail room, or specific floors until the delivery workers arrive at each location, rather

than following one delivery worker throughout the whole delivery process.

The goal of this research is to establish systematic methods to better understand cities’

rapidly changing urban freight deliveries which will ultimately help to take a more data-

driven approach to urban freight management in the future. To achieve this goal, several tools

were used to analyze the collected data including 1) Value Stream Mapping, 2) statistical
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(regression) models, 3) a discrete event simulation and optimization in the following chapters.
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Chapter 4

DELIVERY PROCESS FOR AN OFFICE BUILDING IN
SEATTLE CENTRAL BUSINESS DISTRICT

Movement of goods within a central business district (CBD) can be very constraining

with high levels of congestion and insufficient curb spaces. Pick-up and delivery activities

encompass a significant portion of urban goods movement and inefficient operations can

negatively impact the already highly congested areas and truck dwell times. Identifying

and quantifying the delivery processes within the building is often difficult. This chapter

introduces a systematic approach to examine freight movement, using a process flow map

with quantitative delivery times measured during the final segment of the delivery process.

This chapter focuses on vertical movements such as unloading/loading activities, taking

freight elevators, and performing pick-up/delivery operations. This approach allows us to

visualize the components of the delivery process and identify the processes that consume

the most time and greatest variability. Using this method, we observed the delivery process

flows of an office building in downtown Seattle, grouped into three major steps: 1. Entering,

2. Delivering, 3. Exiting. This visualization tool provides researchers and planners with a

better understanding of the current practices in the urban freight system and help identify

the non-value added activities and time that can unnecessarily increase the overall delivery

time.

This chapter introduces the lean philosophy and value stream mapping (VSM) approaches

to examine the delivery process flows in an office building in downtown Seattle. These

approaches are used to identify areas of improvement, which can enhance the overall quality

of service and work performance [49]. Because the freight delivery process consists of many

steps, applying this new approach can help measuring the delivery time for each process
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accurately, especially when the delivery process needs to consider the number of carriers,

types of goods, and types of delivery vehicles. With VSM approach, dwell times and failed

deliveries can be better understood as it decomposes the delivery process in micro level.

We begin with the creation of a process flow map of an office building in a central

business district, which provides information on each delivery task and identifies areas where

bottlenecks and non-value added times could occur. This map allows one to visualize the

components of the delivery process as well as those tasks that are conducted by all carriers

and those that are not. Identifying the processes that consume the most non-value added

time and the greatest variability will help us identify strategies to improve the overall urban

freight system and be better accountable for extended truck dwell times and failed deliveries.

4.1 Office building description

The selected office building in downtown Seattle has 62 floors with approximately 5000

tenants, including gift shops, restaurants, and coffee shops. This building was referred as

Building D from the data collection section in Chapter 3. Each floor has a unique floor

configuration which allowed us to capture various delivery processes. Types of observed

pickups and deliveries include office supplies, parcels, food items, assorted mail, recycling,

and furniture.

The building is surrounded by four one-way streets (see Figure 4.1). There are seven 30-

minute commercial loading zones and four mixed zones combined with 30-minute commercial

loading zones and passenger drop-off zones. The loading bay has seven parking spaces with

a 30-minute. The security booth at the loading bay includes a full-time security guard and

is open between 6 am and 6 pm. Inside the loading bay, there are two freight elevators which

require a security fob to use.
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Figure 4.1: Configuration of the Observed Office Building

Delivery workers obtain a freight elevator fob from the security guard by handing in their

government-issued identification card for security.

A mobile application for use in a tablet computer (Apple iPad) was developed for col-

lecting real-time data on the delivery process. The predefined options included load/unload,

waiting for/taking elevators, signing for deliveries and much more. To identify the start of

a task, the data collector taps a task button. This immediately begins recording the tasks
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in a web-based database and can be stopped once by tapping a sub-button once the task is

finished. With this approach, each delivery task is time-stamped and the duration of each

task is accurately computed even when the tasks are executed concurrently. Tasks that were

not predefined could also be entered manually in the application. Other information that

was recorded included Whether or not a package was successfully delivered and other data

collection notes.

The data collection process took place over five business days between January 31 and

Feb 4, 2017, between the hours of 9:00 am and 4:00 pm. The data collection team consisted

of four people, who were trained to observe and collect data using the tablet application.

The data collectors would wait until they observed a truck parking in either the loading bay

or the street curbs near the building. They would then approach the delivery worker and

ask permission to shadow and observe his or her delivery process. Given the observational

nature of the data collection and where researchers approached the worker, these deliveries

were most likely not express deliveries. Data from the tablet was then used to construct the

delivery process flow map that showed the detail task durations and delivery sequences.

4.2 Process flow map

The process flow map in this chapter is focused specific on Building D’s the final segment

of the delivery process, which is sometimes referred to as the final 50 feet [150, 51]. This

segment includes out-of-vehicle activities and begins with the driver parking the vehicle and

ends at the point when the driver drives away from the building. There are three major

steps in this segment and they are further subdivided in subtasks:

1. Entering (e.g. parking vehicles, security check-in, unloading goods, waiting for elevators

to go to the destination)

2. Delivering (e.g. taking an elevator to the destination, delivery or pick up actions,

waiting for elevators to go back to truck)
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3. Exiting (e.g. taking an elevator to go back to truck, loading a hand truck back to

truck, security check-out)

This process flow map (see Figure 4.2) shows the delivery actions and subtasks that can

be performed in parallel and those that require a sequence of events for task completion.

The square boxes represent the set of actions, and the diamonds represent the decisions

made along the processes. Based on the collected data, the most shared common delivery

subtasks at the study location was identified. Although each delivery person can generate

many paths, the common delivery subtasks provide insights for areas where more effective

delivery strategies can be deployed.

Table 4.1 summarizes the time duration of each subtask, in the same order shown in

Figure 4.2. The ratio of standard deviation (sd) to the mean is used to identify processes

that have the greatest variation. Those ratios greater than one (highlighted) are areas that

may warrant further examination.

4.2.1 Entering

Data collection began as soon as a truck parks at any of the designated on-street or off-street

(loading bay) commercial loading zones. Drivers can enter the building through the loading

bay or the main entrance on Street A or secondary entrance on Avenue A (see Figure 1).

In this study, 90 % of the drivers (28 out of 31) parked in the loading bay to unload goods.

Large volumes of office supplies could be a big contributor to this result. The mean duration

for the “parking at loading bay” process (40 seconds) was slightly longer than for “parking at

the street curb” (33 seconds). In tight spaces such as loading bay, the drivers’ maneuvering

ability was limited, and several forward and backward maneuvers were necessary, as expected

[157]. During parking activities, conflicts may also occur with pedestrians, bicyclists, and

other passing-by vehicles.

Depending on the location of the parked vehicle, the driver would leave the cargo com-

partment open or closed. In most cases, drivers at the loading bay would leave the door



38

open because the security guard was always present. Drivers who parked on-street tended to

keep the cargo compartment closed when they left the truck for delivery. Two types of cargo

compartment doors were observed: rolling and swing doors. Some heavy duty trucks had a

lift that goes up and down at the back of their cargo compartment to assist the driver with

entering and exiting the cargo compartment. When parking, the drivers had to allow extra

space if they had swing doors or the lift. Some drivers had to lock the door after closing the

cargo compartment. The wait time for the lift or locking the cargo compartment can add to

the total truck dwell time.

Once a delivery worker exited the truck, he or she would walk to either the security booth

to check in or the cargo compartment of the truck to unload. Several office buildings in

downtown Seattle have their own unique security check-in processes. At this office building,

the delivery workers were required to check-in with a security guard to obtain a freight

elevator fob by exchanging their government-issued identification cards. The duration of

the check-in process could vary depending on the familiarity of the drivers with the security

guard. If the driver made regular deliveries to the building and was familiar with the security

guard, the check-in process would be fairly quick. However, the delivery person may also

take additional time to converse with the security guard. Depending on the time of day, a

bottleneck could occur if multiple delivery workers arrived at the same time for check-in.

Drivers would often carry goods by hand for small and light deliveries, and a hand truck

or dolly for large and heavy deliveries. The most common method to unload goods was by

hand, but in the case of heavy deliveries, special equipment such as a forklift or pallet jack

was used.

Doors of the cargo compartment can be located either at the back or side of the truck.

Of the drivers observed, 76% carried goods on dollies or hand trucks and 24% hand-carried

goods. In Figure 4.2 and Table 4.1, hand trucks or dollies are represented as ‘cart’. For

pickups, the drivers skipped unloading activities and walked to the elevator directly after

the security check-in.

The loading bay was located inside the building’s parking facilities where two freight
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elevators were accessible next to the loading dock. However, the passenger elevators were

located further away from the loading dock but very close to the lobby, next to the main

entrance. Therefore, the delivery workers who entered the building through the main or

secondary entrances were more likely to use passenger elevators. Although the speed of the

passenger elevators was approximately 2 times faster than the freight elevators, the passenger

elevators had a higher volume of frequent riders. This is reflected in the mean wait time (52

seconds) for the passenger elevators.

The mean wait time for the freight elevators to go from the loading bay to upper-level

floors was 31 seconds, but the range in wait time was quite large (from 3 to 193 seconds)

This is much greater than the wait time for the freight elevator from destination back to the

loading bay. This is not surprising as the delivery person at the loading bay may have to

wait a long time for the elevator if it is at the top most floors.

4.2.2 Delivering

Having a unique floor configuration and delivery policy for each office made it challenging

for the delivery workers who visited the building for the first time. Some offices required

the delivery workers to use an inter-phone to enter the office suites, some were open to the

public, and some had a receptionist who received and signed for goods on behalf of other

office workers. If the office did not have a receptionist, the delivery worker had to find an

individual receiver to deliver the goods.

Once the delivery workers arrive on the floor of their destination, they performed either

delivery or pickup activities. The mean time spent for pick up (37 seconds) was much quicker

than the mean time spent on delivering goods (57 seconds) which often involve unloading

activities. The high volume of goods could lead to a longer time for unloading goods when

the delivery workers are required to unload goods one by one by hand. On the other hand,

sometimes the high volume of goods can be unloaded in bulk, resulting a short unloading

time.

Three percent of the observed deliveries failed (or were not delivered). Each company
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has different policies on failed deliveries: most delivery workers look for an alternate person

to sign for goods. Some delivery workers can drop off goods on the receiver’s desks without

obtaining a signature from anyone. Some companies allowed the delivery workers to leave

the site after sending a picture(s) of the dropped off goods and locations to the clients

remotely. Company policies can also vary by the types of goods. Better communication

between the delivery workers and the receivers could help reduce the failed first delivery.

A simple notification system could also allow both the delivery workers and the receivers

to share information such as estimated arrival time or the wayfinding instructions. When

the receivers are notified before the delivery arrivals, the chance of failed deliveries may be

reduced. When the delivery workers are well informed about the building layouts, chances

of being lost in the building could be decreased as well.

As expected, the average time for walking with goods (44 seconds) or goods on the cart

(40 seconds) was longer than the average time for those walking without any goods (38

seconds) or with an empty cart (39 seconds). For multiple deliveries, the drivers would

repeat delivery and pick up activities within the building.

The mean wait time for the freight elevator to go back to the loading bay was 63 seconds.

To avoid wait time for the elevator, some delivery workers would hold the freight elevator

open by blocking the elevator door until he or she comes back after completing deliveries.

These delays can compound and create a continuous delay of deliveries for other drivers who

are waiting for the freight elevator to other floors. Lastly, freight elevators were used by

individuals that did not have any goods or freight. These individuals chose not to use the

passenger elevators for their convenience which added additional and unnecessary stops. In

general, elevator bottlenecks have a significant impact on office buildings with many floors.

4.2.3 Exiting

The mean time in the freight elevator to go back to the loading bay was 148 seconds. Once

the driver returns to the loading bay or main lobby after completing deliveries or pickups,

he or she can either walk to the security booth or go back to the truck. In this study, 76% of
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the drivers walked from the elevator to the security booth first. At the security booth, the

drivers return the elevator fob to the security guard where they would get their identification

card back.

During the peak delivery hours (10:00 am to noon), the security guard experienced a

difficulty in accommodating all drivers and a queue began to form. In these situations, a

securely automated check-in and check-out kiosk could be set up to help expedite the process.

The building had the pre-screening program where some delivery workers can obtain the

freight elevator fob in advance and use it without the check-in process.

The mean time for loading the empty cart or placing picked-up goods in the cargo com-

partment was 36 seconds with low variations (SD=9). Closing cargo compartment was also

fairly quick with a mean time of 17 seconds. Once the drivers enter the vehicle, some of

the drivers wait inside the truck to complete their paperwork, with or without the engine

on. Some drivers can avoid paperwork by using a digital device that helps provide real-time

paperless communication between the field and office workers.
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Figure 4.2: Delivery Process Flow Map (n = 31)
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Table 4.1: Duration (in seconds) of tasks within the Delivery Process Flow for Common
Paths (n = 31)

Tasks Subtasks mean sd sd

mean
min max mode

1. Entering
a. Parking ended at loading bay 40 40 1.01 9 165 12

b. Parking ended at street curb 33 30 0.89 12 67 12

c. Exit truck from front door 14 18 1.28 3 90 3

d. Walk from truck to security booth 27 21 0.75 4 102 8

e. Talking with security guard 83 83 1 5 242 5

f. Obtain freight elevator fob 34 21 0.63 2 77 12

g. Walk to cargo compartment - Entry 17 16 0.93 2 67 2

h. Open cargo compartment 20 20 1.03 3 75 7

i. Take cart out 27 30 1.14 1 124 1

j. Take goods out and place on cart 54 56 1.04 3 202 12

k. Take goods out 51 23 0.45 26 84 26

l. Walk to elevator 54 24 0.45 26 105 44

m. Walk with goods on cart from truck to ele-

vator

44 28 0.64 9 129 29

n. Walk with goods from truck to elevator 51 29 0.57 17 105 29

o. Wait for freight elevator (to destination) 31 49 1.56 3 193 10

p. Wait for passenger elevator (to destination) 52 22 0.42 32 76 32

2. Delivering

a. Took freight elevator (to destination) 75 93 1.23 4 486 35

b. Took passenger elevator (to destination) 67 50 0.76 36 126 36

c. Walk from elevator to destination 55 19 0.35 36 81 36

d. Walk with goods from elevator to destina-

tion

87 65 0.74 26 196 26

e. Walk with goods on cart from elevator to

destination

49 50 1.03 10 200 10

f. Unload goods 57 59 1.04 11 221 21

g. Pick up 37 11 0.31 23 58 35

h. Receiver signs for goods 55 77 1.41 3 404 11

i. Walk from destination to elevator 38 16 0.43 25 64 25

j. Walk with goods on cart from destination to

elevator

40 50 1.23 3 193 10

k. Walk with goods from destination to eleva-

tor

44 14 0.32 25 56 56

l. Walk with empty cart from destination to

elevator

39 52 1.34 2 180 2

m. Wait for freight elevator (back to truck) 63 35 0.55 20 124 59

n. Wait for passenger elevator (back to truck) NA NA NA NA NA NA

3. Exiting
a. Took freight elevator (back to truck) 148 155 1.05 2 635 36

b. Took passenger elevator (back to truck) 78 36 0.47 54 120 54

c. Walk from elevator to security booth 27 29 1.07 3 97 18

d. Return freight elevator Fob 44 38 0.84 5 156 6

e. Walk from security booth to cargo compart-

ment

34 23 0.67 9 70 9

f. Walk from elevator to cargo compartment 30 19 0.64 9 60 9

g. Put empty cart back into cargo compart-

ment

42 26 0.62 5 98 33

h. Put goods and empty cart back into cargo

compartment

36 9 0.24 28 47 28

i. Close cargo compartment–Exit 17 16 0.97 5 54 5

j. Walk from truck to security booth–Exit 6 5 0.76 2 11 2

k. Walk to front of truck 22 40 1.8 4 210 8

l. Enter truck from front door 28 32 1.13 1 124 7

Note: highlights indicate sd/mean>1, and bold indicate sd/mean > 1.5
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4.3 Delivery time and activity decomposition

All delivery workers made at least one delivery to the building, with 26% (8 delivery workers

out of 31 workers) making more than one delivery. For those who visited more than one floor,

the maximum number of visits are denoted in Figure 4.3 as ‘D2’ for visits to two different

locations within the building, ‘D3’ for three floors, and so forth with a maximum of ‘D7’ for

seven deliveries observed.

4.3.1 Total Delivery Time

The data collection application allowed us to collect data on dwell time for the three main

delivery steps, the subtasks, as well as total delivery time. Figure 4.4 summarizes the delivery

time measured for each delivery truck. The multiple deliveries are denoted with the same

notations shown in Figure 4.3. The mean total delivery time was 20 minutes. This is

reasonable since the parking time limit at the studied location was 30 minutes. The minimum

and maximum of total delivery times were 9 minutes and 43 minutes respectively. The range

of total delivery times is comparable to a previous study by Cherrett et al. which indicated 9

and 8 minutes as the shortest mean van dwell times according to 2001, and 2008 Winchester

surveys [38].
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Figure 4.4: Distribution of Total Delivery Time (n = 31)

As shown in Figure 4.5, the times for each of the three delivery steps are 7, 8, and 5

minutes, respectively. The percent of total delivery times for each zone are 35% for entering,

40 % for delivering and 25% for exiting. Unloading and organizing goods prior to deliveries

encompass a great deal of the time in the delivery process. The highest variation is shown in

the delivering step at the final destination. Differences in delivery workers’ experience and

familiarity with the building, and the level of interaction with the receptionist are some of

the contributors to these variations.

4.3.2 Variation in Delivery Time

The subtasks in Table 4.1 are visualized in Figure 4.6, which shows the distribution of

delivery time based on the ratio of the standard deviation and the mean (sd/mean). The
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variation (sd) for most processes was close to the mean. The highest variations (sd/mean ¿

1.5) was observed in the activities, ‘walk to front of truck’ and ‘wait for freight elevator (to

destination)’. The six tasks with the largest sd/mean are discussed further in this section.

Note: The letters and numbers within the horizontal bars denote the tasks and subtasks identified

in Table 4.1. For example, 3k represented Task 3 (Exiting) and Subtask k (Walk to front of truck).

Figure 4.6: Ratio of standard deviation and mean (sd/mean) of delivery time.

Task 3k (sd/mean=1.8). Walk to front of truck

The high variation in the activity, ‘Walk to front of truck’ was due to one specific case,

which may not be as common in other normal delivery processes. A delivery worker failed

to deliver the goods but spent 210 seconds lingering in the loading bay, walking back and

forth between the front and the end of the truck. While this is not common, it is important
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to examine because it is associated with a failed delivery.

Task 1o (sd/mean=1.56). Waiting for freight elevator (to destination)

Time spent while waiting for the elevators increased the overall truck dwell time. The wait

time at the bottom floor (loading bay or main lobby) may include elevator travel distance

over the entire building and is impacted by use during peak periods. Wait times from the

office floor can be much quicker for deliveries to the middle floors of the building.

High variation in the wait time for freight elevator could also be related to the elevator

age. Both freight elevators in the observed office building were installed in 1990 (27 years

ago). The frequent breakdowns and slow speeds can contribute to bottlenecks observed.

Weather was also an observed factor. Strong winds from outside the building would come

in through the wide opening of the loading bay entrance, and prevent the freight elevator

doors from being fully close, causing delays on the loading bay level. In these situations, a

security guard would request that the delivery workers press the ‘close’ button until the door

was fully closed. However, those delivery workers that were not familiar with this defect may

instead wait an excessively long time for the elevator to automatically close.

Task 2h (sd/mean=1.41), Receiver signs for goods

Out of all the deliveries, 71% of the drivers were required to obtain a signature from the

receiver. The time it took for the receiver to sign for the received goods varied greatly and

depended on the quantity and type of received goods. For regular deliveries, the receivers

anticipate certain types and amounts of goods being delivered, resulting shorter time in

signing for goods. When the multiple types of delivered goods are not organized before the

delivery, the receiver took a long time to sort and count each item, increasing the total dwell

times for the delivery workers at the final destination.
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Task 2l (sd/mean=1.34), Walk with empty cart from destination to elevator

The walk time within the final destination also showed high variation, especially for those

who walked with hand trucks or dollies, referred as ‘cart’ in the tables and figures. Depending

on the size and types of a cart, maneuvering the office areas with dollies and hand trucks

could be time-consuming because the delivery workers required extra time to hold the office

doors for hand trucks or dollies. By sharing the building infrastructure information such as

the size limits of the hallways or office doors could help the delivery workers to plan out

the deliveries ahead of time. Using standardized carts for deliveries could be another way

to expedite the delivery process, avoiding any undesirable situations such as being stuck in

doors or hallways.

Task 1c (sd/mean=1.28), Exit truck from front door

The high variation in ‘exit truck from front door’ could be due to the time inside the vehicle

to complete paperwork or review receiver lists while the vehicle’s door was open. In some

cases, the drivers were eating or using their cell phone while exiting the truck. However,

most drivers did not take long to exit the vehicle (mean duration was 14 seconds).

4.4 Summary

Freight movement is changing rapidly and it is essential to understand the process flow of

goods globally, regionally, and locally. This paper focuses on the movement of goods locally

and more specifically within an office building in the Seattle central business district. There

has been increasing demand for deliveries in central business districts, but there is limited

space with which to move, both structurally and operationally.

The final 50 feet of the supply chain extensively involves a vertical movement of the

delivery process as deliveries and pick up activities occur mostly while the drivers are out of

the vehicle from the loading zone to the end customer. This chapter introduces a systems

approach to measure and observe detail tasks of the current final 50 feet of the supply chain
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by using a unique tablet application and a process flow map. An office building in downtown

Seattle was observed by using this approach. Process flow map decomposes actions of the

delivery workers, which helps the researchers identify bottlenecks in the current delivery

process and where improvements can be made. The improvements can easy-to-implement

solutions such as an information board to notify delivery workers of imperfections in the

freight elevator to more high cost solutions such as a building redesign.

While the study included only 31 observations, they still provide substantial insights on

the variations that can occur for a one week period within an office building, while also

demonstrating that some steps are consistent regardless of carrier type. A future goal is

to be able to compare the variations observed in this building to other building types and

operations (e.g., shopping center, hotel, residential building). It would also be of interest to

examine different operation types. Future process flow maps could also showcase temporal

differences with respect to seasons, holidays, and weekend vs weekdays.

The scope of this study was also limited to the most common paths of the delivery

process performed at one office building in downtown Seattle. However, this study would

provide insights on the average delivery duration for other similar-sized office buildings in

urban areas. Also, the focus of this paper is to understand the overview of the final leg of

the delivery and pick-up activities by using the new systems approach; process flow maps

with quantitative measures on dwell times. The quantitative measures of delivery time for

each delivery task can enable researchers to identify the tasks with the high coefficient of

variation value being bigger than 1. This provides insights on the tasks that can be performed

faster by others, which can be improved for other workers with a better understanding of

the current delivery process flows. Further research on the final 50 feet of the pick-up and

delivery process in different types of buildings could capture unique characteristics of different

delivery procedures.



52

Chapter 5

EMPIRICAL ANALYSIS OF COMMERCIAL VEHICLE
DWELL TIMES AROUND FREIGHT-ATTRACTING URBAN

BUILDINGS IN DOWNTOWN SEATTLE

With rapid growth and evolution in supply chain practices, cities around the world are

experiencing an influx of goods pickup and delivery activities. The additional related traffic

has added pressure to already congested urban roads. A popular method for managing

commercial vehicle parking behaviors is to restrict vehicle dwell time, which is defined as the

time delivery workers spend performing out-of-vehicle activities while the truck is parked.

However, there are challenges in managing dwell time restrictions. The high number of

commercial parking fines issued in New York City (NYC) is an example of the challenges

in managing the current dwell time restrictions. In 2018, the total amount of commercial

parking fines in NYC was $181.5 million, with major delivery companies such as FedEx and

UPS responsible for 20 to 30 percent of them [23].

Understanding urban freight parking behaviors is particularly difficult because several

underlying factors influence vehicle dwell time. Data on such factors are often proprietary

to independent private companies, and are therefore, not shared with researchers and city

planners. For this reason, most current parking policies overlook the complexity of urban

freight parking behaviors. This paper aims to provide insights on factors that influence

dwell time for commercial vehicles and estimate the magnitude of their influences. Parking

characteristics for urban freight deliveries are fundamentally different from commuter parking

[18]. Urban freight delivery needs close proximity to destinations and requires more space

and time to load and unload goods and to maneuver and park the commercial vehicles [18].

Lengthy dwell time at limited curbside spaces could negatively affect the travel times
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of other commercial vehicles, searching for parking spaces. Rhodes et al. (2012) noted

that quantifying and addressing both horizontal and vertical “last mile” inefficiencies are

important from a planning perspective [129]. Kim et al. (2018) introduced a process flow

for delivery and pick-up activities inside a building in the Seattle central business district

and noted that many factors may affect vehicle dwell time, emphasizing the importance of

accounting for the vertical movement in understanding the fundamental aspects of urban

goods movement [90].

The goal of this chapter is to identify the factors correlated with commercial vehicle dwell

times and quantifying their impacts. This goal was achieved by using a generalized linear

regression approach with data collected at five different buildings in downtown Seattle: a

residential tower, a hotel, a historical building, an office tower, and a shopping mall. Insights

gained from our analysis can be used in the decision making process for urban freight policies

in many cities.

5.1 Summary statistics

There were 157 observations from the five buildings (see Table 3.1). Figure 5.1 shows the

histogram of the dwell times in minutes. Most commercial vehicle parking in this area are

limited to 30 minutes or less. Most of the observed vehicles (90 %) had dwell times less than

30 minutes. Only 16 observations (about 10 %) had dwell times longer than 30 minutes.

Although the parking fines were not monitored (as it was out of the scope for this study),

we did note the number of vehicles that exceeded the parking time limit in order to meet

their delivery schedules. Long dwell times can have a negative impact on parking capacity

in the neighborhood [138]. Providing a good estimate of dwell times can assist the city to

more effectively allocate parking facilities with solutions that are tailored for vehicles based

on their expected dwell times.

The observed dwell times used in the analysis ranged from 1.5 minutes to 107.4 minutes.

Several past empirical studies showed similar ranges between 1 minutes and 90 minutes for

the on-street parking study by Schmid et al. (2018) [138] and from 1.5 minutes to 180
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Figure 5.1: Commercial vehicle dwell times for all five buildings combined

minutes for the off-street parking study by Dalla-Chiara et al. (2017) [44]. Campbell et al.

(2018) used the estimated dwell times between 30 minutes and 90 minutes in calculating the

number of on-street parking spaces [35].

The distribution of observed dwell times was right-skewed with a mean of 16.4 minutes

and a median of 12.3 minutes (1st quartile: 7.8 minutes and 3rd quartile: 21.1 minutes).

The distribution of dwell times by each building also showed right-skewed trends (see Figure

5.2). This right-skewness was expected as past models also showed right-skewed trends in

dwell time distributions [44, 138]. Our data showed a peak dwell time around 10 minutes

including both on and off-street parking spaces while past studies showed peaks at 5 minutes

for on-street parking [138] and 15 minutes for off-street parking [44].

5.1.1 Data observations

On the basis of past commercial vehicle studies, the researchers identified potential factors

that may influence dwell time ([115]-[165],[90]). Factors that were included in our study

were the delivery day of the week, arrival time, total floor area, receptionist presence at
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Figure 5.2: Commercial vehicle dwell times for each building
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lobby, parking location, delivery vehicle type, type of goods being delivered, number of

delivery workers, and number of destinations within each building. The summary statistics

of observed variables are shown in Table 5.1.
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Table 5.1: Summary statistics (n= 157), dependent variable: dwell time

No. Variable Categories Total Group mean Group SD

sample (%) duration duration

(in minutes) (in minutes)

1 Day Mon 13 (8.3) 25.6 19.5

2 Tues 39 (24.8) 17.7 16.5

3 Wed 23 (14.6) 13.6 9.1

4 Thurs 37 (23.6) 16.4 17.3

5 Fri 45 (28.7) 13.9 9.4

6 Vehicle arrival time 6:30–9:30 33 (21) 17.2 18.1

7 9:30–11:30 79 (50.3) 17.5 13.5

8 11:30–15:00 45 (28.7) 13.8 13.5

9 Total floor area 31,000 m2 29 (18.5) 15.1 10.4

10 38,000 m2 29 (18.5) 9.7 7.7

11 45,000 m2 34 (21.7) 26.1 23.1

12 89,000 m2 35 (22.3) 11.0 8.8

13 92,000 m2 30 (19.1) 19.2 9.0

14 Receptionist presence No 93 (59.2) 20.4 16.5

15 at lobby Yes 64 (40.8) 10.4 8.3

16 Parking location Off-street 82 (52.2) 19.1 17.5

17 On-street 75 (47.8) 13.4 9.8

18 Vehicle type Roll-up door 89 (56.7) 18.4 16.9

19 Swing doors 53 (33.8) 15.2 10.8

20 Passenger 15 (9.6) 8.2 5.2

21 Type of goods Oversized supplies 18 (11.5) 20.5 10.6

22 Office supplies 34 (21.7) 17.9 10.7

23 Parcels 39 (24.8) 17.4 22.4

24 Documents 12 (7.6) 14.3 11.1

25 Food 54 (34.4) 13.7 10.7

26 No. of workers One 135 (86) 15.8 14.9

27 Two or more 22 (14) 19.7 11.8

28 No. of destinations One 126 (80.3) 13.2 10.7

29 Two or more 31 (19.7) 29.1 20.5
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Day of the week

In this study, the delivery day of the week included only Mondays through Fridays (excluded

Saturdays and Sundays). Through interviews with building managers, we learned that the

office and historical buildings were closed and the other buildings had minimal freight ac-

tivities on Saturdays and Sundays. Therefore, we limited our data collection to Mondays

through Fridays. Mondays had the longest dwell times (mean = 25.6 minutes). The major-

ity of our Monday observations were from Building E which showed the longest mean dwell

times of 26.1 minutes. This may be pulled the average dwell times for Monday to the highest

while the average dwell time for the other weekdays was 15 minutes. The longest dwell time

(107.4 min) was observed on a Thursday. To account for the imbalanced size of observations

from each building for Monday, the days of the week were categorized into two levels in our

dwell time models: 1) Monday and Tuesday (early week- Group mean:19.7 min, Group SD:

17.4 min), 2) Wednesday, Thursday, and Friday (late week- Group mean: 14.7 min, Group

SD: 12.7 min). As can be seen in Table 5.1, the percentage of deliveries was the lowest on

Mondays (8.3 percent) and highest on Fridays (28.7 percent). A similar trend was observed

in other studies. Cherrett et al. (2012) showed that freight activity was busiest on Fridays

and quietest on Mondays [38]. Han et al. (2005) showed that Thursdays and Fridays had

the most pick-ups and deliveries, whereas Mondays and Tuesdays had the lowest numbers

of deliveries [67]. Some studies showed that weekends or the middle of the week can also be

popular days for deliveries. In the UK, deliveries of wholesale produce were concentrated on

Saturdays, and Tuesdays and Wednesdays were shown to be popular for freight deliveries

[39].

Vehicle arrival time

Figure 5.3 shows the histogram of the commercial vehicle arrival time for all five buildings

combined. 25 % of observed vehicles arrived before 9:39 AM while 90 % of them arrived

before 12:25 PM. The distributions of arrival times for each building type are shown in
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Figure 5.4. As shown in Figure 5.4, Building B and Building E showed 25 % of commercial

vehicles to be arrived before 9:00 AM, earlier than other buildings. Presence of restaurants in

these buildings may have contributed to the early arrival time as the delivered goods in the

morning at Building B and E were mostly food and oversized materials (e.g., construction or

utility materials, etc.). 25 % of deliveries at Building C and D were arrived at the buildings

before 10 AM. 90th percentile of vehicle arrival time for Building C and D were around

12:00 PM and 1:00 PM respectively. The goods delivered at Building C after 12:00 PM were

mostly food (e.g., lunch, catering) for the offices whereas the delivered goods after 1:00 PM

at Building D were mostly parcels and documents. Among the five buildings, the Building A

(which had residential units) showed that 25% of deliveries (mixed types of food, parcels and

oversized goods) arrived at the building before 11:00 AM, the latest 25th percentile compared

to other buildings. In our models, vehicle arrival time was grouped into three levels: 1) 6:30–

9:30, 2) 9:30–11:30, 3) 11:30–15:00. The average dwell time for the first group of 6:30–9:30

(17.2 minutes) and the second group of 9:30–11:30 (17.5 minutes) were longer than those for

deliveries made in the third group of 11:30–15:00 (13.8 min). The observed deliveries were

concentrated in the AM period, sharing a similar trend with other studies. According to an

extensive analysis of 30 UK surveys over 15 years (1996-2009) by Allen et al. (2012), most

urban delivery activities were concentrated in the morning between 6:00 AM and 12:00 PM

[15]. A study conducted by Morris and Kornhauser (2000) that observed delivery activities

in New York City’s central business district (which was defined as south of 59th street to

the tip of Manhattan from the river to river) showed a delivery peak in the morning, with

an average dwell time of 33 minutes or more [114]. In 1999, McKinnon observed a large

number of food deliveries in the the early time period between 5:00 and 9:00 AM [107].

However, Winchester study in 2008 argued that there is no significant difference in delivery

arrival time among business categories, as that study found that 26 percent of businesses

had no scheduled delivery arrival time [38]. The study suggested that the commercial vehicle

arrival time was more likely determined by suppliers or carriers more than by the receiving

businesses [38].
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Figure 5.3: Arrival times for all five buildings combined
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Figure 5.4: Arrival times for each building
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Total floor area

Total floor areas for the observed building differed between 31,000 and 92,000 m2. The

total floor area of the building was assumed to be a good indicator to estimate commercial

vehicle dwell time as a bigger sized building may attract larger sizes and quantities of goods

which require additional time for navigating and handling inside of buildings. However, the

number of floors and total floor area did not follow a linear trend with overall dwell time. For

example, the mean dwell time at Building A with 89,000 m2 and 41 floors - 11 minutes - was

less than that at Building E with 45,000 m2 and 25 floors - 26 minutes. This could be due to

different building configurations and delivery policies, such as having a concierge service or

building configurations that were difficult to maneuver around and inside. Although Building

C had the smallest number of floors (15) and 31,000 m2, both mean and median dwell times

were longer than those at Building A and B where concierge services were offered.

Receptionist presence at lobby

Building A and B had concierge services that allowed delivery workers to drop off their

goods at a designated location close to the entrance of the building and loading bay. In this

way, delivery workers could avoid vertical activities (e.g., taking freight elevators, navigating

inside of the building). Some deliveries at Building A still required travel inside of the

building in case the goods could not be dropped off (e.g., lunch or dinner food deliveries and

deliveries that required a signature from the receiver directly). As expected, the buildings

with receptionists at the lobby showed 10 minutes lower mean dwell time than the buildings

without receptionists at the lobby. This intuitively makes sense because the extra time to

travel to the final destination could be minimized by consolidating goods at the concierge

location. Because the delivery workers had to navigate inside the building, longer dwell times

were expected for other buildings in comparison to deliveries at buildings with concierge

services.
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Parking location

Parking location can affect the length of dwell time. Our observed parking options included

on-street and off-street parking. Alternatively, unauthorized parking such as double parking

could have occurred. However, our observations did not distinguish the unauthorized parking

option, as our focus was on the dwell times either on the street curbs (on-street parking) or

at loading bays (off-street parking). While observed proportions between off-street and on-

street parking were similar, off-street parking showed a longer mean dwell time - 19 minutes -

than on-street parking with an average of 13.4 minutes. Given the parking location, delivery

workers will leave their cargo compartments open or closed. At loading bays, most delivery

workers left their doors open, as a security guard or a surveillance camera was present. On

the other hand, on the street, some delivery workers kept the cargo compartment closed or

locked when they left their vehicles for deliveries. Closing or locking mechanisms could add

extra time to dwell time. The levels of conflict with other roadway users (e.g., pedestrians,

bicyclists, and other vehicles) would also vary depending on parking location, which could

potentially add extra dwell time. Campbell et al. (2018) studied the impact of on-street

parking locations on dwell times and found that the middle of the block is an optimal

location for parking needs, minimizing walking time [35]. Butrina et al. (2017) stated that

the decision of parking location could be influenced by package size and weight, as well as

the distance to the recipient’s location [32]. Depending on the types of locations served, the

number of parking facilities might differ [38]. According to Cherrett et al.’s review of recent

UK urban freight studies, shopping centers had a higher percentage of off-street parking

facilities whereas local shops tended to have more on-street parking [38].

Vehicle type

While most of the commercial vehicles were vans or trucks with either swing doors or roll-up

doors, about 10 percent of the observed vehicles were passenger vehicles with commercial ve-

hicle logos or vehicles performing crowd-sourced delivery services (e.g., ‘Uber eats’, ‘Amazon
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Flex’). The average dwell time for passenger vehicles was around 8 minutes, lower than that

for trucks or vans with roll-up and swing doors (around 17 minutes on average). Delivery

vehicles such as trucks and vans were categorized on the basis of the types of cargo compart-

ments; roll-up doors and swing doors. Roll-up doors are often found on trucks (e.g., trailer

trucks, single-unit trucks, box trucks) while swing doors are often found on vans. When

parking, delivery workers had to consider extra space for loading and unloading, especially

for swing doors or liftgates. Some trucks had a hydraulic or electric powered liftgate at the

rear of the vehicle that moved up and down to assist in unloading and loading heavy cargo.

When swing doors were blocked by a loading bay wall or parked vehicles behind, delivery

workers had to adjust parking to allow extra space. Additional time required for operating

the lift-gate or adjusting parking could be added to the total delivery vehicle dwell time.

Type of goods

The types of goods - including oversized supplies, office supplies, parcels, documents, and

food - were studied. The average dwell time for oversized supplies was 20 minutes, which

was much longer than times for other delivered goods, which ranged between 14 minutes

and 18 minutes. Oversized supplies included furniture and construction materials that re-

quired special moving equipment. Parcels represented the deliveries that were packaged in

cardboard boxes and for which data collectors could not identify the type of items inside.

Office supplies included papers, toilet papers, electronics such as computers, and monitors

identified by data collectors. Deliveries of documents accounted for mail and small docu-

ments that were more likely to require a signature from a recipient. Food deliveries included

both large quantities for restaurants or catering services and small quantities for individuals,

such as grocery deliveries and lunch/dinner deliveries. Differences in the quantity of food

deliveries could be accounted for by the vehicle type because small food deliveries tended to

be performed by passenger vehicles. Because of their similar delivery process characteristics,

office supplies, and parcels were grouped into one category in the model for simplicity.
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Number of workers

Typically, one delivery worker performed deliveries (approximately 86 percent) with an aver-

age dwell time of 16 minutes. When two or more delivery workers were involved in deliveries,

the goods were more likely to be large and numerous in quantity, which may increase the

overall dwell times due to longer handling times (e.g., loading and unloading, navigating).

Since we do not have a volume-controlled variable in our models, the number of workers was

used as a proxy to a large volume of goods. As expected, the mean dwell time for the deliv-

eries with two or more delivery workers (20 minutes) was higher than deliveries performed

by one worker.

Number of destinations

Most of the deliveries (80 percent) went to one location within the building. As expected,

multiple deliveries with two or more destinations within one building had a much larger

mean dwell time (13 minutes vs. 29 minutes). When visiting multiple locations within a

single building, delivery workers may be required to maneuver through unfamiliar floor plans

and to cope with different delivery policies between departments and floors. Also, certain

building types may naturally have a large number of destinations and attract large volumes

of goods to be delivered. For example, Building E has a large shopping mall area with several

restaurants where goods are being delivered in large quantities to multiple locations within

the building. Even when there is only one destination, the delivery may require multiple

trips from a vehicle to the same destination due to a large quantity being delivered. This

had led some deliveries at Building E to have dwell times longer than 50 minutes.

5.2 Regression model approach

The study objectives were to identify factors correlated with dwell time for commercial

vehicles and measure their level of impact on dwell times. We hypothesized that dwell time is

a function of independent variables such as day of a week, vehicle arrival time, building type,
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parking location, vehicle type, type of goods, number of workers and number of destinations

within a building. We used two main modeling approaches. The first approach estimated

models with combined data from all of five building types. The second approach further

analyzed the effects of the independent variables on dwell time in different building types by

applying five separate models.

As was shown in Figure 5.1, the distribution of dwell times was right-skewed. Hence,

right-skewed distributions (log-normal and gamma) were examined in comparison to the

normal distribution. Figure 5.5 shows the distribution fit for the data sets. Gamma distri-

bution often associates with the concepts of random or neutral processes, including queuing

models, climatology, and financial services [58]. Gamma distribution is frequently used to

predict wait time until k th arrival [88]. The Shapiro-Wilk test (Table 5.2) confirmed that

the log-normal and gamma distributions would be good fits for the observed dwell times, as

almost all the data sets failed to reject the null hypothesis (p-value ¿0.05) that the observed

data would follow theoretical densities.

Table 5.2: Shapiro-Wilk test result (P-value)

Distribution Combined Building A Building B Building C Building D Building E

Normal 2.66e-15 1.42e-04 1.47e-03 7.81e-05 4.23e-03 4.67e-06

Log-Normal 0.1555 0.6864 0.5121 0.796 0.2977 0.7127

Gamma 0 0.35 0.44 0.1 0.14 0.07

Total observations 157 35 29 29 30 34
Null hypothesis: True cumulative distribution function equals the tested distribution.

General linear models with a gamma-distributed and log-normal dependent variable were

created by using the ‘GLM’ function in the R statistical software package (version 4.0.2).

The probability density function of gamma-distributed data yi, given scale parameter (θi)
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Figure 5.5: Histogram with fitted distributions
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and shape parameter (κ) is:

f(yi) = yκ−1
i e−yi/θi

θκi Γ(κ) where yi, θ, κ > 0

Γ(κ) =
∫ ∞

0
yκ−1e−ydy

The multivariate gamma-distributed variable can be presented by yi and the vector size,

p, which is a function of independent variables x1, x2,....,xα. Assuming that the link function

of “log” that was used in our dwell time models (g(µ) = log(µ)) and the shape parameter α

was constant throughout the process, then each element in y can be expressed as:

yi ∼ GAMMA(shape = κ, scale = [β0 + β1 ∗ x1 + β2 ∗ x2 + ...βκ ∗ xκ]/κ])

for i = 1,...,p. The mean and standard deviation for the gamma distribution are then:

µ = E(yi) = κ ∗ θ = g−1(β ∗ x′i) = exp(β ∗ x′i)

V ar(yi) = κ ∗ θ2

5.2.1 Correlation analysis

A correlation analysis was conducted to ensure there were no issues with multicollinearity.

Since the variables are categorical, chi-square tests of independence and Cramer’s V values

were calculated to test the correlations and strength of these associations. Figure 5.6 shows

the Cramer’s V values with p-values of the chi-square test (in shades of grey).

The correlation analysis shows high correlations in total floor area and parking location

with other variables. Especially, the correlation between total floor area (building specific)

and parking location variables was significant showing a high Cramer’s V value of 0.83.
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This is anticipated because parking location availability was highly dependent on different

buildings. For example, Building C was built in 1924 and did not have any off-street parking

facility (e.g., loading bay). On the other hand, Building B had a full-time staff member who

received goods at the loading bay, deliveries always went to that off-street parking locations.

Both the total floor area and parking location variables had strong correlations with the

vehicle type and vehicle arrival time variables.

As a result, we removed the total floor area and parking locations from our models and

ensured that the association does not exceed the Cramer’s V value of 0.3 among explanatory

variables [9, 40].

Figure 5.6: Correlation between explanatory variables
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5.3 Regression model results

The full models contained days of the week, vehicle arrival time, receptionist presence at

lobby, vehicle type, type of goods, number of workers, and number of destinations within

a building as independent variables. Using a stepwise algorithm (‘stepAIC’ function with

both directions in MASS package) for feature selection, the full models were further refined

into the refined models that include valuable variables that are significantly or marginally

correlated with dwell times [132]. To examine the model assumptions for the final models, the

‘simulateResiduals’ function in the DHARMa package was used to plot residual diagnostics

[68].

Different types of models (i.e. Linear, Log-linear, Gamma regressions) were generated

for model comparison. For all of our dwell time models, the linear and log-linear models

showed the worse fit than the Gamma model. The Gamma model showed the least negative

log-likelihood value, indicating the best fit in estimating coefficients with minimal errors.

5.3.1 Combined dwell time models - using data from all five buildings

The combined data (n=157) from the five buildings was used for the models in this section

and referred as ‘combined dwell time models’ throughout the paper. The results are sum-

marized in Table 5.3. The days of the week, vehicle arrival time, and number of workers

were not significant in explaining dwell times for commercial vehicles. However, receptionist

presence at lobby, vehicle type, type of goods, and number of destinations within a building

were significantly associated (p <0.05) with dwell times. Residual diagnostics plots (shown

in Figure 5.7) and Nagelkerke pseudo-R-squared values showed strong goodness of fit for

both full and refined dwell time models. The refined model showed lower Alkaike Informa-

tion Criterian (AIC) value, indicating a better fit. Therefore, the refined model was chosen

as the final model, and results were analyzed based on the refined model.

The estimates from the refined model (see Table 5.3) showed that deliveries to the build-

ings with receptionist presence at the lobby were significantly correlated with a 44 % shorter
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dwell time than deliveries to buildings without a receptionist. Deliveries made by passenger

vehicles had 44 % shorter dwell times than deliveries made by vehicles with roll-up doors

(e.g., trucks). Deliveries of documents were correlated with shorter dwell times (36 percent

shorter) than deliveries of oversized goods. Deliveries that were delivered to multiple (two

or more) destinations within a building had longer dwell times (1.83 times) than deliveries

to one destination.

Table 5.4 shows the log-likelihood values for different types of dwell time models with

the variables used in the final refined model.
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Figure 5.7: Residual diagnostics QQplots for the combined dwell time models - left (full
model), right (refined model)

Table 5.4: Combined dwell time model comparison

Model Log-Likelihood

Linear -614.38

Log-linear -614.03

Gamma -543.72

5.3.2 Dwell time models for each building type

The findings from dwell time models for each building type are summarized in Table 5.5.

Apart from the combined dwell time models from the previous section, dwell time models

in this section were built for each building type to separately investigate the relationship

between independent variables and dwell times for the individual building types. The final

dwell time models were selected using a stepwise algorithm. Residual diagnostics plots
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(shown in Figure 5.8) and Nagelkerke pseudo-R-squared values showed strong goodness of

fit for the models.

Because of differences in building configurations and operations, a few independent vari-

ables were not controlled for particular building types. For example, at Building B, all

deliveries were conducted by one delivery worker and vehicles with swing doors or roll-up

doors at the off-street loading bay. Because a full-time staff member received goods at the

Building B’s loading bay, the number of destinations was always one, as deliveries always

went to that single location. Therefore, variables such as vehicle types: passenger vehicle,

number of workers, and number of destinations were eliminated for Building B. The vehicle

type: passenger vehicle was not included in the model for Building E because no deliveries

were observed to be made by passenger vehicles. Nevertheless, although a few variables were

not controlled for in some models, significant variables correlated with dwell times were still

identified, consistent with the combined dwell time models.

Vehicle type: In the full and refined models from the combined dwell time models, vehicles

with swing doors, as opposed to vehicles with roll-up doors, were not significantly but only

marginally correlated with dwell times. However, they showed significant associations at

Building E and D, respectively. At Building E, dwell times for vehicles with swing doors

(e.g., vans) were significantly shorter (55 percent) than those for vehicles with roll-up doors

(e.g., trucks). On the other hand, the vehicles with swing doors were significantly correlated

with longer dwell times (1.45 times) at Building D. Passenger vehicles in combined dwell

time models showed more significant association with shorter dwell times than vehicles with

roll-up doors. Passenger vehicles at Building A showed similar but marginal associations

with shorter dwell times.

Type of goods: In the full and refined models, deliveries of documents were significantly

correlated with shorter dwell times than deliveries of oversized supplies such as furniture and

construction materials. Deliveries of documents were significantly and marginally correlated

with shorter dwell times for Building C and D respectively. Although the full and refined

models showed deliveries for food had no significant association with dwell time, food deliv-
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eries at Building E showed a significant association with shorter dwell times than oversized

supplies.

Number of destinations: For all buildings except Building B, deliveries with two or more

delivery destinations showed significant associations with longer dwell times (range between

1.48 and 2.62 times) as compared to deliveries that go to a single destination. These findings

aligned with the combined dwell time model results, which showed significant associations

with a longer dwell times (1.83 times).

Both the combined dwell time models and dwell time models for each building type

revealed that the significant variables related to dwell times were vehicle type, type of goods,

and number of destinations, which are discussed further in the following section.

Table 5.6 shows the log-likelihood and AIC values for different types of models with the

variables used in the final refined models.
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Figure 5.8: Residual diagnostics QQ plots for the five separate dwell time models by different
building type (Building A,B,C (top rows from left to right) and Building D,E (bottom rows
from left to right))

Table 5.6: Model comparison - five separate dwell time models by different building type

Log-Likelihood (AIC)

Model Building A Building B Building C Building D Building E

Linear -113.6 (239.3) -96.8 (203.6) -106.9 (221.8) -99.2 (208.5) -146.9 (303.9)

Log-Normal -114.4 (238.9) -96.5 (203.0) -106.9 (221.8) -96.7 (203.4) -145.9 (301.9)

Gamma -103.6 (219.1) -89.4 (188.9) -96.3 (202.7) -95.1 (202.1) -129.9 (269.8)
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5.4 Model application

The aim of this study was to examine if there are correlations between commercial vehicle

dwell times and characteristics of buildings and deliveries and identify the strength of the

correlations. Our analysis showed that there are significant factors that are correlated with

shorter or longer dwell times for commercial vehicles. Using data collected at a residential

building, a hotel, a historical building, an office building, and a shopping mall in downtown

Seattle, we built generalized linear models with attributes that were known to be correlated

with dwell times ( [90], [115], [38], [13], [138], [165], [44]). Factors such as a receptionist

presence at lobby, number of destinations, vehicle type, and type of goods were significantly

correlated with dwell times for commercial vehicles. The study shed new light on the effects

of these important factors on commercial vehicle dwell time.

5.4.1 Building operations and number of destinations

Dwell times at the buildings with a receptionist presence at lobby were significantly correlated

with shorter dwell times as compared to those without. Allen et al. (2000) indicated that

the distance from the goods vehicle to the premises being served can influence dwell times

[13]. Although there have been several dwell time studies related to commercial vehicles,

each study focused on a particular building type (e.g., office buildings [115], shopping malls

[44]) or parking location type (on-street parking in New York City [165],[138]). Cherrett et

al. (2012) examined the relationship between dwell times and floor areas of different store

types (e.g., jewelers, mobile phone stores, food and drink retail) but found no correlations

[38]. This motivated us to observe the relationship between dwell times and different building

types, rather than business types.

Shorter dwell times were expected for the buildings with a receptionist presence at the

lobby, as the physical location for receiving goods was close to the parked vehicles. At

Building B, the same loading bay area was used as both a parking location and the drop-off

location where full-time concierge staff received goods. Also, dwell times for deliveries to
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a single destination within a building was significantly correlated with shorter dwell times

than deliveries to multiple destinations within a building. The key finding from this result

was that not only the physical building characteristics (e.g., location of loading bays, freight

elevators) but also delivery operations within buildings can strongly influence dwell times

for commercial vehicles. When parking policies are implemented, it is important to consider

their relationship with building operations for handling deliveries, as building operations

within different buildings can greatly influence dwell time for commercial vehicles.

5.4.2 Vehicle type

Consistent with previous dwell time studies ([165],[44],[138]), vehicles with swing doors (e.g.,

vans) were correlated with shorter dwell times (significance showed only at Building E) than

were vehicles with roll-up doors (e.g., trucks). As we expected, deliveries made by passenger

vehicles were significantly correlated with shorter dwell times than were vehicles with roll-up

doors, which had not been reported in previous studies. Currently in Seattle, passenger

vehicles can be registered as commercial vehicles as company fleets can comprise passenger

vehicles. In addition, in recent years, more deliveries have been made by individuals using

their own passenger vehicles for deliveries. Documentation of dwell times for deliveries made

by passenger vehicles is especially limited. With crowd-sourcing delivery platforms, deliveries

by passenger vehicles are certainly growing in number without regulation. The varying levels

of influence of different vehicle types on dwell times should be further investigated as more

samples are collected.

5.4.3 Type of goods

Deliveries of documents were correlated with shorter dwell times than oversized supplies, as

expected. The dwell time model for Building E showed a significant correlation between food

deliveries and shorter dwell times. The dwell time model developed by Schmid et al. (2018)

[138] using data of on-street parking dwell times in New York City found that deliveries of

parcels and food were involved with shorter parking durations than service vehicles and other
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deliveries. With New York City on-street parking data, Zou (2016) [165] consistently found

that food deliveries were correlated with shorter dwell times than other types of deliveries

such as furniture.

The knowledge gained from this study can be extended to other cities that have similar

types of buildings that attract urban freight activities. In this study, we clearly identified

factors that are correlated with dwell times for commercial vehicles and presented detailed

data analysis results, along with comparisons with factors found in previous studies.

5.4.4 Parking strategies

Our dwell time models identified factors that can provide good estimates of commercial

vehicle dwell times. Being able to estimate commercial vehicle dwell times provides for better

predictions of commercial parking needs. Our models provide insights that can enhance

parking policies by tailoring time limits and locations based on commercial vehicle needs.

Our analysis suggests the following recommendations for the future parking policies; 1)

allow passenger load zone use for short commercial deliveries, 2) implement standardized

delivery receipt policies aimed to reduce dwell time, 3) consider context-specific commercial

vehicle parking time limits. With additional dwell-time studies, cities can develop locally-

specific policies that reduce unauthorized parking and its consequences, while best utilizing

commercial parking spaces.

1. Allow passenger load zone use for short commercial deliveries

The model results showed that the dwell times were greatly affected by the types of delivery

vehicles and goods, and that dwell times for smaller vehicles (e.g., passenger car) were

significantly shorter (44% less) than larger vehicles with roll-up and swing doors (e.g., vans,

trucks). Deliveries of documents were correlated with shorter dwell times (36% less) than

deliveries of oversized goods. Because dwell times for short deliveries are similar to that

of passenger drop-offs, allowing passenger load zones for these types of deliveries will allow

maximizing the use of passenger load zones, while reserving the limited commercial load

zones for longer deliveries.
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2. Implement standardized delivery receipt policies aimed to reduce dwell

time

Our dwell time models showed that having a receptionist in the lobby is associated with 44%

shorter commercial vehicle dwell times. Our models also found that the number of destina-

tions that are two or more locations within a building can result in 1.83 times longer dwell

times. Introducing standardized delivery policies such as providing a designated consoli-

dation location (e.g., reception desks, common carrier locker installation at entrances) will

reduce the time required to navigate and operate floor-to-floor deliveries inside of buildings.

Currently, delivery policies are mostly determined by individual building managers alone.

In many cases, different floors or offices in one building may have several different delivery

policies for their convenience. Even when there are consolidation areas, they are often hap-

hazardly located. For example, a reception desk can be located on a high floor (e.g., 15th

floor) without any consequences from the city. This will lead to high costs for both carriers

and cities because carriers are required to learn the specific building configuration to find the

location of the reception desk and travel longer routes within the building. Meanwhile, the

cities need to manage limited parking facilities for these carriers. In contrast, the locations

of mailboxes inside of the urban buildings have been thoroughly considered to be placed con-

veniently for the United States Postal Service carriers, even before the building construction.

With the rapid growth in urban goods movements, consolidation locations such as reception

desks or common carrier lockers can be suggested to be designated near main entrances as

a standardized delivery policy. With the standardized delivery policies, dwell times can be

reduced, as well as more accurately predicted, which will allow planners to better allocate

and utilize commercial parking capacity.

3. Consider context-specific commercial vehicle parking time limits

Our five separate dwell time models for each building type showed that significant variables

that influence the dwell times can vary by different buildings. Different building types may

require longer or shorter dwell times based on the type of goods, vehicle types, number of

destinations. This shed new light on the use case for context-specific commercial vehicle
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parking time limits for commercial vehicle parking. With the current fixed time limits of

30 minutes, we observed Building E had more vehicles that exceeded the parking limits

(24%) as compared to Building A (3%). The commercial vehicles may run out of time and

have to re-enter the CVLZs because the deliveries at Building E may require more time

than those at Building A. This can also be translated into Building A may not require a

full parking limit of 30 minutes. Accurate dwell time models like the ones described in this

paper can be used for developing context-specific commercial vehicle parking time limits for

commercial vehicle parking. The information gained from our dwell time models can enable

the cities to develop and apply context-specific commercial vehicle parking time limits. This

can also further developed into new parking pricing structures for various types of deliveries

or delivery vehicles. This could improve the current one-size-fits-all approach to a more

data-driven approach to commercial vehicle parking management.

5.5 Summary

Delivery activities in downtown Seattle were observed at five freight-attracting buildings that

include the residential building, the hotel, the historical building, the office building, and the

shopping mall. This paper identifies factors correlated with dwell time for commercial vehi-

cles. Generalized linear models with gamma distribution were developed, with commercial

dwell time as the dependent variable and several explanatory variables. Dwell times corre-

lated with buildings with concierge services tended to be shorter. As expected, deliveries of

oversized supplies tended to have longer dwell times. Deliveries by passenger cars had shorter

dwell times. When there were deliveries made to multiple locations within the building, the

dwell times significantly increased in comparison to one consolidated delivery.

Our dwell time models provide valuable insights into the correlations between commercial

vehicle dwell time and other explanatory variables. Valuable information on factors affecting

commercial vehicle dwell time can help in developing future parking strategies. The dwell

time model can provide estimated commercial vehicle dwell time with a known delivery day,

types of vehicles and goods, whether single or multiple deliveries. Under different policy
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scenarios, our models can be applied to estimate the percent changes of commercial vehicle

dwell time to better understand the effects of the policies on commercial vehicle dwell time. A

future goal is to observe these changes based on different policy scenarios using establishment

data in a city. Additionally, we plan to apply our dwell time models for optimizing parking

operations and building resource allocations. For example, with the estimated dwell times,

the number of on and off-street parking lots and the number of receptionists can be optimized

based on the number of deliveries made to buildings. At the same time, many logistics and

delivery companies can also benefit from estimated dwell time to optimize their delivery

routes and the number of deliveries for each delivery worker.

Future improvements can be achieved by expanding the data set by collecting observations

around more buildings and for a longer period of time. With a larger data set, the accuracy

of the estimates can be enhanced, and specific characteristics could be well-defined. Also,

data collection for a long period of time can allow discovering possible temporal differences

with respect to seasons, holidays, and weekends vs weekdays. In the future, different types of

models (e.g., duration models, etc.) can be developed with the same data set and compared

with this generalized linear model results to compare the model performances.
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Chapter 6

PREDICTION & OPTIMIZATION OF THE COST
DISTRIBUTION FOR ALLOCATING BUILDING AND

PARKING RESOURCES WITH INCREASING NUMBERS OF
URBAN GOODS DELIVERIES

With rapid global urbanization and the explosion of e-commerce, urban freight efficiency

has become highly dependent on the successful management of urban growth and sustain-

ability. Urban freight transport increases accessibility to resources and trade markets by

collecting, transporting, and distributing goods within urban areas, playing a crucial role in

economic growth and the promotion of sustainable and livable cities [71]. In recent years,

urban freight policy has been challenged by the complexity and cost of last-mile deliver-

ies, as well as increasing congestion and pollutant emissions [24]. To better prepare for

future urban logistics, researchers have emphasized the importance of innovation in every

aspect of traffic management, urban planning, and urban warehouse designs [31]. As past

research has recognized that delivery processes rely on transportation networks and systems,

the major focus has been on network optimization (e.g., horizontal movement) in last-mile

deliveries [134]. However, this has led to a critical research gap in understanding the verti-

cal movements of deliveries (e.g., unloading/loading activities, use of freight elevators, and

pick-up/delivery operations) and their impacts on building and parking infrastructure design

[89]. Cities’ off-street parking requirements are an example of the lack of data-driven ap-

proaches to establishing building and parking designs and policies [142]. Through off-street

parking policies, building developers are required to provide a minimum number of off-street

parking facilities based on the types of development (e.g., residential land use, shopping cen-

ters) in addition to on-street parking spaces. Although such parking policies highly impact

architecture and urban designs and increase the price of everything around such develop-
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ments, city planners often propose such design requirements on the basis of instructions

from elected officials, other cities’ parking requirements, or unreliable surveys, rather than

scientific methodologies [142]. A lack of curbside space, because of excessively long stays by

delivery workers, can increase urban congestion as other delivery vehicles circle city blocks

looking for parking spaces [129]. Not only the number of on– and off-street parking spaces,

but also building resources (e.g., number of elevators, building staff) can affect urban freight

efficiency significantly. We aimed to close this research gap by providing useful simulation

and optimization tools for city planners use to better understand the freight delivery cost

dynamics among delivery workers, building managers, and city planners, as well as to esti-

mate adequate numbers of building and parking resources as a way to better to prepare for

increasing demand for urban delivery of goods.

Urbanization is key in creating higher demand for goods movement within urban areas,

which is expected to grow continuously. In 2018, 55 percent of the world’s population lived in

urban areas (a significant increase from only 30 percent in 1950), expected to increase to 68

percent by 2050. Most urbanized countries are in North America (82 percent of its population

is in urban areas), Latin America and the Caribbean (81 percent), Europe (74 percent) and

Oceania (68 percent) [119]. In this analysis UN followed the definition of urban used in each

country, according to national statistical offices in the latest available census [119]. Current

urban planning practices encourage urbanization by providing effective transit services or

promoting sustainable transportation modes such as walking and biking. While urbanization

has environmental and social benefits, it also increases the numbers of goods entering into

limited urban spaces, creating slower travel speeds, denser roadway networks, and conflicts

among pedestrians, bicycles, and mixed traffic [31]. There is often a disconnection between

smart growth strategies and recent land-use, building, and urban freight system designs [158].

As population densities increase in cities, constraints to urban deliveries become more severe,

especially because more vehicles increase the demand for limited city roads, parking spaces,

and vehicle dwell times (i.e., time required to perform deliveries). An increasing number of

commercial parking fines issued in New York City, totaling $181.5 million, is an example of
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the challenges of managing current parking restrictions. It is evidence of a systematic failure

in current infrastructure (e.g., building, parking) designs to accommodate rapidly growing

numbers of deliveries. Building a strong, data-driven approach to developing urban designs

and policies is important as city policy makers constantly seek solutions to better manage

future demands for goods and services.

E-commerce is another key to the fast-growth of urban freight transport. Recent advances

in new technologies for the internet of things and smartphones have reshaped retail industries,

significantly increasing business-to-business and business-to-consumer urban logistic services

at unstoppable speeds [24]. E-commerce has become an indispensable part of the retail

framework, resulting in sales totaling more than $3.5 trillion worldwide in 2019, representing

14.1 percent of all global retail sales [145, 144]. These amounts are expected to nearly

double to $6.5 billion and 22 percent of total retail sales by 2023 [145, 144]. Emerging

countries in the Asia-Pacific - mainly China, India, and Indonesia have had significant e-

commerce growth, especially China, which had an estimated $1.9 trillion in e-commerce in

2019 [50]. With various online platforms and easy payment choices, customers have ample

options for comparing prices and shopping for goods and services online. The growing use of

smartphones is also making online shopping more convenient and easier, even when traveling

[41]. By 2021, Statista estimates that 53.9 percent of all e-commerce sales will occur on

mobile devices [146]. With advanced technology, consumers expect free or low-cost delivery

fees and more transparent information about delayed, damaged, or lost packages, as well as

easier return procedures [41]. Nguyen et al. (2019) pointed out that consumers’ purchase

decisions are highly influenced by delivery fees, delivery speeds, time slots and delivery

dates, and delivery time windows (e.g., daytime/evening) [120]. The delivery fee is known to

influence e-commerce purchases [100, 99]. Lepthien and Clement (2019) found that threshold-

based free shipping, however, leads to more returns [99]. As advanced technologies have

progressed, consumers’ expectation for delivery speeds, delivery time windows, and shipment

individualization have reached ever higher standards [24]. This has led to high supply chain

costs for corporations and trucking and logistics companies as the costs of shipping goods and
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services have risen [43]. Without proper design of urban freight infrastructure, unintended

consequences such as congestion, high logistics costs, and parking and safety issues will be

aggravated, as both urban freight flows and public and private vehicle traffic will inevitably

increase [24].

This study applies a multi-objective optimization method, combined with a discrete event

simulation (DES), also known as simulation-based multi-objective optimization (SMO) [102].

The process of improving urban freight policies involves trading off optimal solutions that

take into consideration multiple variables and objectives [151]. Our DES accounts for com-

plex vertical movements that were noted during field observations in an office building in

downtown Seattle, U.S. By building a discrete event simulation model, we first aimed to un-

derstand the freight cost relationships among delivery workers, building managers, and city

planners. With the SMO, we then estimated the numbers of building and parking resources

that could minimize costs associated with freight deliveries for all three parties; delivery

workers, building managers, and city planners. Three main objective functions are described

in the problem formulation:

1. Minimize the costs for delivery workers.

2. Minimize the costs for building managers.

3. Minimize the costs for city planners.

Infrastructure designs optimized through our proposed method could ultimately benefit

both the users (e.g., delivery companies) and planners (e.g. city planners, building managers)

of building and parking infrastructure.

6.1 Simulation design

Through simulation models, this research aims to understand the complex cost relationships

among delivery workers, building managers, and city planners and evaluated the impacts of

increasing demand for urban goods deliveries on parking and building operations.
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In a previous study, trained data collectors shadowed delivery workers at freight-attracting

urban buildings and collected thee time distributions associated with each delivery task, us-

ing a customized mobile app [91]. The details of the data collection process can be found

in Kim et al. (2018) [89]. Data collected from downtown Seattle, Washington, U.S., were

used to model the final 50 feet of the delivery process in our discrete event simulation model.

In Python software (version 3.8), the discrete event simulation was built by using a SimPy

package (version 4.0.1). A value stream map was used to create a computer simulation model

and represent essential process delivery steps in the final 50 feet. Five important variables

(i.e., numbers of on– and off-street parking spaces, security guards, elevators, and reception-

ists) were selected as decision variables to calculate the costs for delivery workers, building

managers and city planners.

6.1.1 Problem formulation

The indices, decision variables, boundaries, input parameters of this model, and cost func-

tions are defined in this section.

Indexes:

i :Index of building staff (i = 1, . . . , I) such as security guard, receptionist

j :Index of building resources (j = 1, . . . , J) such as elevator, off-street

parking spaces (e.g., loading bay) for commercial parking

k :Index of on-street parking type such as commercial parking,

un-authorized parking (e.g., double parking)

Decision variables:

Xi : Number of building staff types i

X : Vector of the number of building staff types, X = [X1, . . . , XI ]

Yj : Number of building resource types j

Y : Vector of the number of building resources types, Y = [Y1, . . . , YJ ]
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Zk : Number of on-street parking types k

Z : Vector of the number of on-street parking k, Z = [Z1, . . . , ZK ]

Upper and lower boundaries for decision variables:

li : Minimum number of building staff type i

lj : Minimum number of building resources type j

lk : Minimum number of on-street parking type k

ui : Maximum number of building staff type i

uj : Maximum number of building resources type j

uk : Maximum number of on-street parking type k

Simulation parameters:

R : Total simulation replications

r : Index for simulation replication (r = 1,...,R)

n : Index for delivery vehicle

N : Total delivery vehicle in a building

m : Index for resources used (can be Xi, Yj, Zk,Wo)

Start: Arrival time of delivery vehicle

End : Departure time of delivery vehicle

f : Total number of goods that failed to be delivered

unau : Total number of unauthorized parking occurrences

cf : Failed delivery cost

cd : Labor cost for delivery worker n

ci : Labor cost for building staff i

cj : Operational cost for building resource type j

ck : Operational cost for on-street parking type k
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cunau : Environmental cost for unauthorized parking

uim : Utilization rate of resource m for the building staff

ujm : Utilization rate of resource m for the building resource type j

ukm : Utilization rate of resource m for the on-street parking type k

Cost functions for DC, BWC, CWC:

Delivery worker’s cost estimator:

DC(X, Y, Z; ξ)r = (
∑N
n=1(Endn − Startn)

N
)r ∗ cd︸ ︷︷ ︸

Length of stay cost

+ (
∑N
n=1(f)
N

)r ∗ cf︸ ︷︷ ︸
Failed delivery cost

(6.1)

Building manager’s waste cost estimator:

BWC(X, Y, Z; ξ)r

=
∑
i

Xi∑
m=1

ci ∗ (1− uim) +
∑
j

Yj∑
m=1

cj ∗ (1− ujm)

= (
∑
i

Xi ∗ ci +
∑
j

Yj ∗ cj)︸ ︷︷ ︸
Resource costs

− (
∑
i

Xi∑
m=1

ci ∗ uim +
∑
j

Yj∑
m=1

cj ∗ ujm)
︸ ︷︷ ︸

Utilization cost

(6.2)

City planner’s waste costs estimator:

CWC(X, Y, Z; ξ)r

=
∑
i

Zk∑
m=1

ck ∗ (1− ukm) +
∑

(unau) ∗ cunau

= (
∑
k

Zk ∗ ck)︸ ︷︷ ︸
Resource costs

− (
∑
k

Zk∑
m=1

ck ∗ ukm)︸ ︷︷ ︸
Utilization cost

+
∑

(unau) ∗ cunau︸ ︷︷ ︸
Unauthorized parking cost

(6.3)

Subject to:

li ≤ Xi ≤ ui ∀i (6.4)
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lj ≤ Yj ≤ uj ∀j (6.5)

lk ≤ Zk ≤ uk ∀k (6.6)

Xi ≥ 0 ∀i (6.7)

Yj ≥ 0 ∀i (6.8)

Zk ≥ 0 ∀i (6.9)

The mathematical models are explained as follows:

Equation 6.10 is the minimal average cost of delivery workers who make deliveries to

the building, where ξ indicates the stochastic effect. The minimal average DC includes

two parts: (a) minimum length of stay cost, (b) minimum failed delivery cost. Given each

simulation replication r, the average DC of all deliveries is estimated according to Equation

6.1. Therefore, the average DC (Ê[DC(X, Y, Z; ξ)]) across multiple replications is predicted

with Equation 6.10 and is applied to approximate a true DC performance f1(X, Y, Z) under

a given number of all staff and building and parking resources.

Equation 6.11 is the minimal average building manager’s costs, where ξ indicates the

stochastic effect. The minimal average BWC includes two parts: (a) minimum building

resource costs, (b) maximum utilization costs for building resources. Given each simulation

replication r, the average BWC of all deliveries is estimated according to Equation 6.2.

Minimizing total BWC will result in minimizing resource costs and maximizing the utilization

rate simultaneously. Therefore, the average BWC (Ê[BWC(X, Y, Z; ξ)]) across multiple

replications is predicted with Equation 6.11 and is applied to approximate a true BWC

performance f2(X, Y, Z) under a given number of all staff and building and parking resources.

It is important to note that the proposed cost structure for the receptionist (X2) in building

manager’s waste cost considers only the cost dedicated for receiving goods and does not

account for their opportunity costs for performing productive tasks other than receiving

goods. Therefore, the concept of receptionist can be simply considered as the concept of

having a parcel locker system or a consolidation location (with the same service time of

receptionists) that is solely dedicated to receiving parcel deliveries without opportunity costs.
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Equation 6.12 is the minimal average costs for city planners who manage on-street park-

ing and unauthorized parking, where ξ indicates the stochastic effect. The minimal average

CWC includes three parts: (a) minimum on-street parking operational costs, (b) maximum

utilization costs for on-street parking spaces, and (c) unauthorized parking cost. Given each

simulation replication r, the average CWC of all deliveries is estimated according to Equa-

tion 6.3. Minimizing total CWC will result in minimizing resource costs and maximizing

the utilization rate for resources simultaneously. Additionally, the total unauthorized park-

ing number is multiplied by the environmental costs, as unauthorized parking will affect

the surrounding environment (e.g., congestion, noise, etc.). Therefore, the average CWC

(Ê[CWC(X, Y, Z; ξ)]) across multiple replications is predicted with Equation 6.12 and is

applied to approximate true CWC performance f3(X, Y, Z) under a given number of all

on-street parking resources.

6.1.2 Problem description

This study looked at the process flows in the final 50 feet of urban freight deliveries (see

Figure 6.1). The delivery workers arrival interval times and service times for each delivery

followed specific stochastic distributions based on field observations. Our model presumed

that the type of resources such as building staff (e.g. security guard, receptionist) and

resources (e.g. parking, elevator) does not change dynamically over time. Under such pre-

established conditions, the simulation model was studied. The building and parking resources

that were used in this work included the number of building staff (X1 = security guard, X2

= receptionist), the number of building resources (Y1 = off-street parking, Y2 = elevator),

and the number of on-street parking spaces (Z1 = on-street parking).
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Figure 6.1: Simplified Delivery Process Flow Map

6.1.3 Delivery flow

Delivery workers’ out-of-vehicle activities inside urban buildings were simulated based on

field observations from an office building in downtown Seattle. Time in the system was

categorized into two sections: time associated with parking activities and dwell time (the

moment when the vehicle was parked until the vehicle left the site). Figure 6.2 shows the

definitions of parking and dwell time referred to in this paper.
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Figure 6.2: Definitions of parking and dwell time

When a delivery worker arrived at the building, on-street and off-street parking spaces

were filled first. Both on– and off-street parking were assumed to have no queue, reflecting

real-world commercial vehicle parking behaviors. When both on– and off-parking spaces

were full, delivery workers were assumed to park at unauthorized areas or leave the building,

failing to deliver. Because resources such as security check-in and elevators had to be used

in each direction when the building was entered and exited the building, the resources were

shared between delivery workers who entered and exited the system. For example, when

there were queues at the security booth and elevator, the queues were formed in a first-in-

first-out (FIFO) method, containing a mixture of delivery workers entering or exiting the

system. Figure 6.1 shows the overall process flow of the simulation model, and the delivery

flows are described as follows.

1. Arrival: Delivery workers can park either at off-street parking or on-street parking. In

case there is no parking lot available, delivery workers have the option to park at an

unauthorized parking area (90 percent of the time) or leave the building which result

as a failed delivery (10% of the time).

1.1. Once parked, delivery workers take time unloading their goods.

1.2. When unauthorized parking occurs, delivery workers spend extra time walking

from the vehicle to the building.
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1.3. They walk from the vehicle (or building entrance) to a security booth.

2. Security check-in: Most delivery workers go through a security check-in to obtain a

guest pass to the building. Some bypass security check-in as they perform regular

deliveries (e.g., UPS, FedEx, etc.).

2.1. Once checked in, they walk from security booth to elevator.

3. Elevator up: All delivery workers take an elevator up to their delivery destination.

Based on the capacity of an elevator, other delivery workers may be required to wait

till others finish using the elevator either up or down.

3.1. They walk from the elevator to a delivery destination.

4. Delivery: Delivery workers can deliver goods to a receptionist. If the receptionist has

a queue greater than two, delivery workers either drop off without a receptionist (90

percent of the time) or fail to deliver (10 percent of the time).

4.1. They walk from the delivery destination to the elevator.

5. Elevator down: All delivery workers take an elevator down. On basis of the capacity

of an elevator, other delivery workers may be required to wait till others finish using

the elevator up or down.

5.1. They walk from the elevator to the security booth.

6. Security check-out: Delivery workers are required to return the guest pass that they

obtained when entering the building.

6.1. They walk from the security booth to their vehicle.

6.2. Once returned to their vehicle, delivery workers take time loading their tools (e.g.,

dollies)
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7. Departure: Delivery workers leave the site.

Several parameters for the simulation were set up according to the cost parameters in

Table 6.1 and processing time distributions in Table 6.2. The labor costs and time distri-

butions were estimated based on the real-world observations and the Seattle area’s average

labor costs for each occupation according to the U.S. Bureau of Labor Statistics [4]. Oper-

ational cost and costs for failed delivery and unauthorized parking were assumed as shown

in Table 6.1. Table 6.4 indicates the resource limit parameters, that is, the maximum and

minimum amounts of each resource.

A past study found that the average construction costs for parking structures in 2015,

excluding land cost, was about $24,000 per space for above ground parking and $34,000 per

space for underground parking [142]. In 2017, Sound Transit, a public transit agency serving

the Seattle metropolitan area in the U.S., estimated $100,000 per space for park and ride

facility, including high land prices and a contractor’s market [104]. To provide more realistic

options, the costs of on– and off-street parking spaces and elevators included operational costs

only, rather than the costs for building new infrastructure (e.g., constructing new parking

spaces or installing a new elevator). This means that our scope of work was limited to the

re-allocation of existing infrastructure, rather than building new infrastructure, based on the

optimized numbers. For example, when the optimized number of parking spaces or elevators

is smaller than the current system, city or building managers can decide to transfer the

use of parking spaces that were dedicated for commercial vehicles to passenger vehicles or

use of freight elevators to passengers, etc., rather than removing the current infrastructure.

Therefore, the model results can be still valuable to policy makers for allocating existing

resources.
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Table 6.1: Resource limit parameters of each building and parking resource

Model resource Cost ($)

Labor cost of delivery worker $20 per hour

Labor cost of receptionist $18 per hour

Labor cost of security guard $16 per hour

Cost of failed delivery $30

Operational cost of on-street parking $1 per hour

Operational cost of off-street parking $1 per hour

Operational cost of elevator $1 per hour

Cost of unauthorized parking $20
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Table 6.2: Processing times of each activity within the simulation model

Activity Processing/Service times (minutes)

Triangle distribution (min, mode, max)

On-street parking Triangle(9, 12, 165) / 60

Off-street parking Triangle(12, 12, 67) / 60

Walking from unauthorized parking to building Triangle(5, 8, 20)

Walking from truck (or building entrance) to security booth Triangle(4, 8, 102) / 60

Security booth Triangle(2, 9, 156) / 60

Unloading goods from truck Triangle(20, 30, 300) / 60

Elevator Triangle(4, 35, 635) / 60

Walking from elevator to destination Triangle(10, 20, 200) / 60

Receptionist Triangle(3, 11, 404) / 60

Walking from destination to elevator Triangle(3, 20, 200) / 60

Walking from elevator to security Triangle(3, 18, 97) / 60

Loading a tool back to vehicle Triangle(5, 30, 100) / 60

6.2 Simulation results

The simulation period for this study lasted 8 hours (480 minutes). The first 1 hour (60

minutes) of the simulation constituted the transient period, and the remaining 7 hours rep-

resented the steady period. Experimental data were collected during the latter period. The

reliability of the simulation results was ensured by applying a sufficient replication number

control (n = 100). Currently, four delivery workers per hour were assumed to arrive at

the modeled building. The current resource allocations for the building had seven off-street

parking spaces (see Figure 6.3), eleven on-street parking spaces, one security guard, four re-

ceptionists, and two freight elevators. Multiple simulation runs with various arrival rates of

delivery workers were performed to understand the impact of increased numbers of deliveries

at an urban building.
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Figure 6.3: Loading bay with seven off-street parking spaces

6.2.1 Validation and verification of the simulation model

To confirm that the delivery process simulation model is an appropriate model that can ac-

curately reflect and represent the conceptual model, the following validation and verification

processes were employed.

1. Validation process: The model was mainly developed on the basis of real-world ob-

servations of an urban building in Seattle, Washington. Our data collection processes

allowed us to obtain very detailed time distributions and delivery task sequences for

multiple urban goods deliveries. We also conducted iterative discussions with repre-
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sentatives from industry experts from logistics companies who were members of the

Urban Freight Lab under the Supply Chain Transportation and Logistics Center at

the University of Washington [7].

2. Verification process: This model can trace delivery workers’ flows step by step through a

time-advance mechanism and can produce simulation animation by printing customized

messages for each different step in the model. Multiple checking procedures on the

behavior of the model were performed to ensure the quality of the model.

6.2.2 Cost distributions with various arrival rates of delivery workers

The simulation results with various arrival rates are summarized in Figure 6.3. Delivery

arrival rates were increased and decreased from the current arrival rate (four deliveries per

hour). As expected, the lowest cost for delivery workers resulted when the delivery rate

decreased to two deliveries per hour. This makes sense, as there were no queues at the

resources, resulting in the shortest average dwell time for delivery workers. On the other

hand, building waste costs were the highest because the resources were idling until deliveries

arrived at the building. Therefore, the cost for delivery workers kept increasing as the de-

livery arrival rate increased. Similarly, building waste costs decreased as resource utilization

increased with increased numbers of delivery rates until the system overflowed at the rate

of 18 deliveries per hour. The high number of queues concentrated at one location (e.g., the

elevator), resulted in idling at other locations (e.g., reception). We observed the lowest waste

cost for city planners at the arrival rate of ten deliveries per hour. This means that the arrival

rate of ten deliveries per hour was the point at which on-street parking was highly utilized,

with no or minimum instances of unauthorized parking. The CWC increased again at the

arrival rate of 12 deliveries per hour, as the instances of unauthorized parking increased.

With an increased number of deliveries, our simulation model allowed us to better under-

stand the cost relationships among delivery workers, building managers, and city planners.

The results showed that the current numbers of resources allocated at the urban building
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were not designed for the current arrival rate of four deliveries per hour. For example, the

current building and parking resources were not utilized at 100 percent capacity with the cur-

rent arrival rate of four deliveries per hour. We can visualize this by exploring the utilization

rate of the resources.

Table 6.3: Simulation results regarding dwell time and cost distribution

Delivery arrival rate (per hour) Average dwell DW BWC CWC

time (min) ($) ($) ($)

2 (lowest cost for delivery workers) 17.5 5.7 605.2 87.7

4 (current arrival rate) 17.7 6 602.8 87.5

6 18.4 6.2 600.5 87.2

8 19.2 6.4 598 86.9

10 (lowest cost for city planners) 20.6 7.1 596.5 86.6

12 24.5 8.1 593.7 89

14 28.4 9.5 591.3 105

16 (lowest cost for building manager) 35.7 12.9 586.4 289.3

18 (system overflow- bad for all) 48.1 15.8 587.7 626.1
Note: Holding decision variables constant at current conditions

(X1=1, X2=4, Y1=7,Y2=2, Z1=11)

6.2.3 Utilization of resources

At the current arrival rate of four deliveries per hour, the resource utilization rates are

visualized in Figure 6.4. As expected, the current numbers of on-street (n = 11) and off-street

(n = 7) parking spaces were being used at less than 20 percent of their capacity. Although

the security guard (n = 1) was in service at almost 100 percent of capacity, elevators (n =

2) were in service at 60 percent of their capacity, and receptionists (n = 4) were in service

at 30 percent of their capacity.
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Figure 6.4: Utilization rate of building and parking resources at the arrival rate of 4 deliveries
per hour

From the simulation, we could also observe how each resource was utilized by calculating

cumulative average counts for active resources over the simulation run time. The usage of

resources can also be expressed as instantaneous usage, showing the number of resources

in use for a certain period of service time (e.g. shown as spikes each time resources are

being used) over simulation run time. In this analysis, cumulative average counts were

shown (instead of instantaneous usage). Cumulative average counts can be understood as

the average number of resources that are in use on average over the simulation run. For

example, when the resources are being used at their capacity for the entire simulation run,

then the cumulative average counts would be increased to their capacity quickly at the

beginning of the simulation run (but still gradually increase at the beginning) and would

stay close to the capacity for the entire simulation run.
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In Figure 6.5 and 6.6, each line represents one simulation run. They show the cumulative

average counts of on– and off-street parking spaces over time in green. As stated before, we

assumed that there was no queue for parking resources. The capacity limits are shown in

dotted blue in the figures. As expected, usage of parking spaces increased as delivery arrival

rates increased. At the current arrival rate of four deliveries per hour, on– and off-parking

spaces were far too many and were underutilized, at far lower than their capacity.

Figure 6.5: On street parking space usage
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Figure 6.6: Off street parking space usage

Figures 6.7 and 6.8 show the cumulative average counts of security booth and elevator in

green and queues in red. Although many queues were generated at the security booth over

time, the overall formation of queues did not exceed its capacity most of the time. This is

probably because delivery workers spent time loading goods before checking in at the security

booth between each delivery, leaving some breathing time for the security guard to check in

each delivery worker. Also, some delivery workers could bypass the security guard based on

their status (e.g., regular delivery workers such as UPS or FedEx). On the other hand, we

can see that the queues at elevators accumulated more than their capacity at the arrival rate

of ten deliveries per hour. At 16 deliveries per hour, the average queue length reached up to

20, showing that the elevators were the bottleneck of the current system.
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Figure 6.7: Security booth usage
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Figure 6.8: Elevator usage

6.2.4 Failed deliveries and unauthorized parking

Failed deliveries and unauthorized parking occurred when both on– and off-street parking

spaces were full. Additionally, failed delivery could occur when the queue at the receptionist

desk was more than two. Figures 6.9 and 6.10 show the cumulative occurrences of failed

deliveries and unauthorized parking. Each red line represents each simulation run. Failed

deliveries and unauthorized parking started to occur at the arrival rate of 12 deliveries per

hour. As expected, as the delivery arrival rate increased, failed delivery and unauthorized

parking occurrences increased.
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Figure 6.9: Cumulative occurrences of failed deliveries over simulated time
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Figure 6.10: Cumulative occurrences of unauthorized parking over simulated time

6.3 Multi-objective optimization design and algorithm

The simulation model results showed that the current building and parking resource allo-

cation system is not designed ideally for the resources (e.g. not at their capacity). When

more than 10 deliveries per hour arrive at the current system, the elevator started to suffer,

showing the constant queues while the number of on– and off-street parking spaces shows no

signs of problems. This means that even if the number of parking spaces are increased due

to a high number of deliveries in the future, the bottlenecks of the system are just pushed to

the building resources, such as elevators in our case. This emphasizes the importance of col-

laboration among delivery workers, building managers and city planners because the delivery

systems are linked from the street curbs to building elevators. The costs functions from the
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simulation model show the conflicting objectives of delivery workers, building managers and

city planners (see Table 6.3). When there are multiple-objectives, simulation-based multi-

objective optimization is known to search for trade-offs between several conflicting objectives

to find the optimal solutions [46]. For the future infrastructure designs, we estimated the

numbers of building and parking resources that could minimize costs associated with freight

deliveries for all three parties; delivery workers, building managers, and city planners. Three

main objective functions for this multi-objective problems are shown below.

Multi-objective functions:

1. Minimize delivery worker’s costs (DC):

f1(X, Y, Z) = Ê[DC(X, Y, Z; ξ)] =
∑R
r=1 DC(X, Y, Z; ξ)r

R
(6.10)

2. Minimize building manager’s waste costs (BWC):

f2(X, Y, Z) = Ê[BWC(X, Y, Z; ξ)] =
∑R
r=1 BWC(X, Y, Z; ξ)r

R
(6.11)

3. Minimize city planner’s waste costs (CWC):

f3(X, Y, Z) = Ê[CWC(X, Y, Z; ξ)] =
∑R
r=1 CWC(X, Y, Z; ξ)r

R
(6.12)

Given restricted numbers of building and parking resources, this study aimed to search

and obtain the most viable solutions for allocating adequate amounts of resources to better

prepare future demand. Twelve deliveries per hour was set as the future delivery demand for

our optimization model because we started to see the prominent bottlenecks in the simulation

model with the current building and parking allocations. To improve the current system, we

searched for optimal numbers of resources within the lower and upper limits shown below.
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Table 6.4: Resource limit parameters of each building and parking resource

Lower limit (LL) Upper limit (UL)

Number of security guard 1 4

Number of receptionist 1 4

Number of off-street parking 2 10

Number of elevator 1 2

Number of on-street parking 2 15

A multi-objective optimization model was formulated to identify optimum numbers of

parking spaces, staff, and elevators to minimize freight delivery costs for city planners, build-

ing managers, and delivery workers. Given the large solution space (4*4*9*2*14 = 4,032)

and multi-objective nature of our model, this study applied two multi-objective evolutionary

algorithms: 1) the population-based NSGA II to search non-dominated solutions (Pareto-

optimal solutions) and 2) multi-objective evolutionary algorithm based on decomposition

(MOEA/D) through the Pymoo package (version 0.4.1) in R. NSGA II has been used most

commonly for multi-objective, simulation-based optimization [22]. Similar multi-objective

simulation optimization algorithms have been used for optimizing resource allocation in

emergency departments and healthcare systems [52, 75]. In this section, the basic concepts

of the selected algorithms are described, while more detailed descriptions can be found in

Deb et al. (2002) [45] for NSGA II and in Zhang and Li (2007) [163] for the MOEA/D

algorithm.

6.3.1 NSGA II

The non-dominated sorting genetic algorithm (NSGA II) is a population-based algorithm

developed by Deb et al. (2002) [45] to search for multiple non-dominated solutions (Pareto-

optimal solutions) through evolutionary processes. Multi-objective optimization problems

involve conflicting objectives (e.g., one objective increases while the other decreases). There-
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fore, there is no global solution but a set of solutions.

The first non-dominated sorting generic algorithm (NSGA) was proposed by Deb et al.

[45], but three main criticisms followed over the years; 1) the high computational complex-

ity of non-dominated sorting, 2) a lack of elitism, and 3) the need to specify the sharing

parameter, σshare, when a parameter-less diversity-preservation mechanism is desirable. The

NSGA II algorithm overcomes these drawbacks.

NSGA II is a kind of genetic algorithm, which is an heuristic optimization method inspired

by natural evolution that produces better and better approximations. A new population is

generated by the process of evaluating individuals based on the fitness levels to identify the

elite population (Pareto set) with a non-dominated sorting algorithm [52]. With each gen-

eration, the current elite population is selected to generate new offspring through crossover,

mutation, and repair operators. The fitness values of the current elite population with the

new offspring are reevaluated to create a new elite population. This evolution process is

repeated until the approximate non-dominated resource allocation solutions are found (ter-

mination condition).

Initialization

The combination of decision variables can be designed as a chromosome or individual. Each

chromosome contains segments of decision variables, forming a combination of decision vari-

ables. First, the initial population is randomly generated from the minimum and maximum

ranges of each decision variable.

Fitness assignment & selection

The initialized population is sorted into each front based on non-domination (elite). A

fast non-dominated sorting system partitions all chromosomes into different non-domination

fronts. The first front is the completely non-dominant set in the current population, and the

second front is dominated by the individuals in the front only. For each front i, all solutions

of front (i) always dominate front (i+1). The fitness values are given to each front. For
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example, the first fronts are assigned fitness values of 1, and the second fronts are given

fitness values of 2, and so on (see Figure 6.11). Therefore, the first front is the best level of

all fronts among the population.

In addition to fitness value, crowding distance is calculated for each individual, as a new

parameter. Crowding distance is a measure of Euclidean distance between two individual

chromosomes in the same front based on their multi-objective fitness values. Large average

crowding distance will result in better diversity in the population. Parents are selected from

the population by using binary tournament selection based on rank and crowding distance.

Figure 6.11: NSGA II Procedure [45]

Crossover

The selected population generates offspring with crossover and mutation operators. Crossover

is performed to swap parts of a solution with another in chromosomes to provide mixing of

the solutions and convergence in a subspace. Crossover occurs on two chromosomes at a time

and generates two offspring by combining the features of both chromosomes under a cross

over rate, (pc). There are many different types of crossover. For example, uniform cross-over

operates by uniformly selecting genes from either of two chromosomes and copying them to

offspring 1, and the remaining genes are copied to offspring 2. By default, NSGA uses the
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real-coded genetic algorithm simulated binary cross-over (SBX) method, which uses a proba-

bility density function that simulates the single-point cross over operator of the binary-coded

genetic algorithm. The mixture of population that consists of the current population and

offspring is sorted again based on non-domination, and only the best N (population size)

individuals are selected.

Mutation

As the crossover operator can generate offspring very similar to the parents, the new genera-

tion may lack diversity. As a way to solve this issue, the mutation operator randomly changes

the value of some feature of offspring. A random number between 0 and 1 is generated to

pick which feature is mutated. If this number is lower than a value called the mutation rate,

that variable is flipped. The mutation rate is usually chosen to be 1/m, where m is the

number of features. This means we mutate one feature of each individual. For NSGA II, the

polynomial mutation is used (further described by Deb and Deb (2012) [47]).

6.3.2 MOEA/D

The multi-objective evolutionary algorithm based on decomposition (MOEA/D) is an evolu-

tionary algorithm that decomposes multi-objective optimization problems to several single-

objective sub-problems [163]. MOEA/D attempts to optimize these sub-problems simulta-

neously. Each sub-problem has its own best solution, which is determined by comparing all

solutions found by the algorithm. Among these sub-problems, the neighborhood relations are

constructed based on the distances between the aggregation coefficient vectors. Each sub-

problem is optimized in MOEA/D by using information from its neighboring sub-problems.

We used the penalty boundary intersection method for decomposition which minimizes a pe-

nalized distance value of the form d1 + θd2 for a solution x with respect to a weight w (θ =

penaltyvalue)[154].F igure6.12showsthedistancesinpenaltyboundaryintersectionmethod.
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Figure 6.12: The d1 and d2 distances in the penalty boundary intersection method [154]

The major advantages of MOEA/D over Pareto dominance-based MOEAs (e.g. NSGA

II) is that single objective local search techniques can be readily used in MOEA/D [125].

6.4 Optimization results

This section summarizes the results obtained by the two optimization algorithms, MOEA/D

and NSGA II, to minimize costs for delivery workers, building managers, and city planners.

Our optimization models used the delivery arrival rate of 12 deliveries per hour (higher than

the current arrival rate of four deliveries per hour), given probable growth in urban deliveries

in the future. Therefore, our models could be beneficial in developing building and parking

designs that could improve current resource allocations in urban cities. Figures 6.13 show

Pareto frontiers obtained by using the NSGA II and MOEA/D, respectively. As one can infer

from the figure, the sets of Pareto optimal values from each algorithm seemed very similar
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(a BWC of between $220 and $250, a DC of between $8 and $10, and a CWC of between $60

and $150), although the NSGA II produced extremely high BWC values of between $400

and $600. We can see that MOEA/D provided more targeted ranges for the Pareto frontiers.

Policy makers can choose any point from the Pareto-optimal solutions presented in Figure

6.13 by creating a proper cost distribution strategy. Currently, the exact cost distributions

among delivery workers, building managers, and city planners are unknown and very com-

plex, as there is no data-driven approach for implementing regulations for managing building

and parking resources in light of the rapidly growing demand for urban deliveries. Our op-

timization model minimizes costs for all three parties, preventing biased policies that could

benefit only one or two parties. By comparing the costs of the alternative solutions, policy

makers can consider a broad decision spectrum and consequently take the advantage of more

flexible decision making.

For example, policy makers may want to reduce a city’s waste costs more than building

managers and delivery workers. In this case, policy makers can choose the options (one of the

dots in the Pareto frontiers) with lighter grey color, which represents a low CWC in Figure

6.13 while increasing other costs for BWC or DC or both. Our systematic approach to cost

distributions can provide flexibility to policy makers because it considers cost distributions

under multiple objectives.

On the basis of polity decisions, policy makers can decide on the appropriate resource

allocations associated with the chosen cost distributions. For example, policy makers could

choose one of the Pareto frontiers from NSGA II and MOEA/D that are marked in red

circles in Figure 6.13. They are picked as they are shown the similar cost combinations for

DC, BWC, CWC.



116

Figure 6.13: Pareto frontiers obtained from the NSGA II (left) and MOEA/D (right)

Table 6.5 shows the combination of decision variables resulted from the selected exam-

ples marked in red circle in Figure 6.13. Although numbers of on– and off-street parking are

slightly different from each other, the combination of corresponding decision variables were

similar except for the number of on-street parking. The information gained from the opti-

mization results can be applied to future decision making processes for building and parking

operations.
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Table 6.5: Resource limit parameters of each building and parking resource

NSGA II MOEA/D

Number of security guard 1 1

Number of receptionist 2 2

Number of off-street parking 5 4

Number of elevator 2 2

Number of on-street parking 11 8

Delivery worker’s cost (DC) $8.5 $8.3

Building manager’s waste cost (BWC) $246.9 $238.8

City planner’s waste cost (CWC) $89.5 $71.6

Through our optimization model, we could add, remove, or reallocate the building and

parking resources to tailor them to each different Pareto frontier on the basis of their own

policy needs.

6.5 Summary

A multi-objective, simulation based optimization framework was developed to aid decision

makers in determining the building and parking resource allocations that yield the best cost

distributions for delivery workers, building managers, and city planners. The proposed frame-

work was developed with a simulation phase and an optimization phase. In the simulation

phase, analysis of current parking and building infrastructure with different delivery arrival

rates was conducted to better understand the dynamics of freight delivery cost distributions

among delivery workers, building managers, and city planners. In the optimization phase,

results obtained with two popular multi-objective optimization algorithms, NSGA II and

MOEA/D, were compared to find the optimized numbers of resources at the fixed delivery

arrival rate of 12 deliveries per hour.

This study contributes to the policy making process of allocating building and parking
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resources, by considering three key players involved in urban deliveries: delivery workers,

building managers, and city planners. First, it offers a complex simulation that reflects

complicated final 50 feet of delivery processes and real-world time distributions. From the

simulation model, we can learn how cost distributions for different parties are related to

increasing numbers of urban deliveries. Second, it applies multi-objective optimization algo-

rithms to provide insights into possible optimal cases that would minimize the costs for all

three parties.

The proposed framework can support policy makers in determining the best combina-

tion of building and parking resources that can minimize costs. As the proposed framework

considers all of the costs for different parties, it enables policy makers to determine the

best trade-offs between the objectives related to these resource allocations. Because the

multi-objective evaluation provides several alternative solutions, policy makers make deci-

sions making within a broad decision spectrum. Additionally, utilization of optimization

algorithms ease the computational burden of the simulation phase of the proposed frame-

work.

Our study sheds new light on the opportunities for delivery workers, building managers,

and city planners to work together to better prepare for increased demand for urban deliv-

eries. Our research effort will continue to integrate the proposed data-driven approach into

policy making procedure. The proposed framework can also be improved by normalizing

the costs for each party and applying weights to different parties to account for different

priorities. For example, the city may assign higher weights to the city’s waste costs and may

want to investigate how the relationships with building managers and delivery workers may

change.
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Chapter 7

CONCLUSION

This dissertation focused on understanding urban freight deliveries and aimed to con-

tribute to provide insights and approaches that are based on data to support future freight

plans. The goal of this research was to establish systematic methods to better understand

cities’ rapidly changing urban freight deliveries which will ultimately help to take a more

data-driven approach to urban freight management in the future. To achieve this goal, sev-

eral tools were used to analyze the collected data including 1) Value Stream Mapping, 2)

statistical (regression) models, 3) a discrete event simulation and optimization algorithms.

The first part of this dissertation focused on discovering the process associated with

the final 50 feet of the urban freight delivery using value stream mapping. This chapter

introduced the lean philosophy and value stream mapping (VSM) approaches to examine

the delivery process flows in an office building in downtown Seattle. The final 50 feet of the

supply chain extensively involves a vertical movement of the delivery process as deliveries and

pick up activities occur mostly while the drivers are out of the vehicle from the loading zone to

the end customer. This chapter introduces a systems approach to measure and observe detail

tasks of the current final 50 feet of the supply chain by using a unique tablet application

and a process flow map. An office building in downtown Seattle was observed by using

this approach. Process flow map decomposes actions of the delivery workers, which helps

the researchers identify bottlenecks in the current delivery process and where improvements

can be made. The improvements can easy-to-implement solutions such as an information

board to notify delivery workers of imperfections in the freight elevator to more high cost

solutions such as a building redesign. Because the freight delivery process consists of many

steps, applying this new approach can help measuring the delivery time for each process
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accurately, especially when the delivery process needs to consider the number of carriers,

types of goods, and types of delivery vehicles. With VSM approach, dwell times and failed

deliveries can be better understood as it decomposes the delivery process in micro level.

The second part of this dissertation explored contributing factors associated with dwell

time for commercial vehicles using statistical models. This chapter provided statistical mod-

els with explanatory variables based on the information gathered from the first part of the

dissertation. The models provided insights on the levels of influences of each factor on dwell

times, which could help the cities on developing policies and priorities that are specific to

delivery characteristics. Dwell time is defined as the time that delivery workers spend per-

forming out-of-vehicle activities while their vehicle is parked. Restricting vehicle dwell time

is widely used to manage commercial vehicle parking behavior. However, there is insufficient

data to help assess the effectiveness of these restrictions. This makes it difficult for policy

makers to account for the complexity of commercial vehicle parking behavior. The current

study aims to identify factors correlated with dwell time for commercial vehicles. This is

accomplished by using generalized linear models with data collected from five buildings that

are known to include commercial vehicle activities in the downtown area of Seattle, Washing-

ton, USA. Our models showed that dwell times for buildings with concierge services tended

to be shorter. Deliveries of documents also tended to have shorter dwell times than oversized

supplies deliveries. Passenger vehicle deliveries had shorter dwell times than deliveries made

with vehicles with roll-up doors or swing doors (e.g., vans and trucks). When there were

deliveries made to multiple locations within a building, the dwell times were significantly

longer than dwell times made to one location in a building. The findings from the presented

models demonstrate the potential for improving future parking policies for commercial vehi-

cles by considering data collected from different building types, delivered goods, and vehicle

types.

The third part of this dissertation focused on predicting and optimizing the cost distri-

bution between delivery workers, building managers, city planners with increasing numbers

of deliveries in urban buildings. The number of package deliveries and more varied delivery
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options are increasing rapidly in the cities annually. This may lead to an imbalance of supply

and demand of the current building and parking resources to prepare for the future demands

of urban freight activities. Along with urban building managers, the city’s policy makers seek

solutions to better manage the future demands for goods and services in the cities. Given

the limited spaces and costs, increasing parking and building resources in urban cities can be

challenging. Therefore, optimizing resource allocation (e.g parking spaces and building staffs)

is important to minimize the costs for both the users (e.g. carriers) and planners (e.g. city

planners, building managers). This chapter introduced a multi-objective simulation-based

optimization model for building and parking resource allocation to minimize the costs for

delivery workers, building mangers, and city planners. As delivery process and performance

in the final 50 feet of urban freight activities are stochastic, our multi-objective mathematical

models were performed using a non-dominated sorting genetic algorithm NSGA II (NSGA

II) and multi-objective evolutionary algorithm based on decomposition (MOEA/D), in con-

junction with a discrete-event simulation model to estimate the expected performance values

of each building and parking allocation solution. Finally, optimized numbers of parking and

building resources were obtained to minimize the costs for both building managers and de-

livery companies to work together as a team to better prepare for the future demands for

urban goods deliveries in the cities. The main contributions of this chapter include not

only simulation and optimization models but also the realizations how building and parking

management are related on the efficiency of urban delivery system. For example, a large

number of parking spaces does not solve the urban freight problems while it may cause a

large queues at the elevator. More data-driven approach that is proposed in this research

will allow policy makers to consider proper cost distributions between key players in urban

freight deliveries.

The generalizability of this study is limited to the particular sample of buildings used in

this research, which was selected to ensure sufficient variability in urban freight activities.

Further research is needed with an increase in the numbers of sample buildings, including

more high-rise buildings as well as mid-rise buildings, to verify our findings. This research
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is also limited to the information of the numbers of floors visited by delivery workers, rather

than the volume of packages that were delivered. Therefore, this study does not consider

potential economies of scale in the delivery of multiple packages to individual buildings.

This will be an important area of future research regarding sustainable urban freight delivery

systems. The proposed cost structure for the receptionist in building manager’s waste cost in

simulation models may also be an issue because receptionists can perform productive tasks

other than receiving goods. Our data collection was limited to the activities that receptionists

performed for deliveries only. Therefore, our model considered the receptionist desks as the

resource of collective package delivery locations only, disregarding such opportunity costs for

receptionists. Having the concept of receptionists in building managers’ waste costs could be

more complex than our proposed cost functions, which can be more systematically modified

and added in the future. Alternatively, the proposed cost function for receptionists can be

replaced by the concept of having a parcel locker system or a consolidation location that is

solely dedicated to receiving parcel deliveries without opportunity costs.

While there are limitations, this study shows that there may be conflicting priorities

between the different actors in the public and the private sectors, pushing the urban freight

delivery costs to each other. For the extreme scenarios, if on-street parking (e.g., curb space)

went away entirely, urban freight delivery costs are transferred to delivery workers who will

have a difficult time finding parking and building managers who provide off-street parking

(e.g., loading bay) spaces which will be the only parking options for delivery workers. On

the other hand, if there are too many parking spaces with a large number of deliveries, there

will cost pushed to the building managers as there will be a lot of queues at the building

resources such as security guards, elevators, and receptionists. This research contributes to

the new understanding of the urban freight system as a whole, connecting between parking

and building operations, with complex cost relationships among delivery workers, building

managers, and city planners. This study shows that actors in the public and private sectors

will need to work together and negotiate future arrangements to reduce the costs for all

parties and improve the efficiency of urban freight and package deliveries to individuals
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and businesses in cities. Collaborative efforts are desperately required in managing parking

spaces, regulating building managers in building designs, and instructing freight delivery

entities for effective operation systems in urban buildings. This research provides insights

into understanding the complex final 50 feet of delivery processes and the impact of increased

urban freight deliveries in the current urban systems. Multiple tools suggested in this research

can be used for policy makers to obtain better information and improve communications

between public and private sectors prior to actual policies, which can be scaled and applied

to other urban cities.
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