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A B S T R A C T

While the number of deliveries has been increasing rapidly, infrastructure such as parking and building
configurations has changed less quickly, given limited space and funds. This may lead to an imbalance between
supply and demand, preventing the current resources from meeting the future needs of urban freight activities.
The aim of this study was to discover the future delivery rates that would overflow the current delivery
systems and find the optimal numbers of resources. To achieve this objective, we introduced a multi-objective,
simulation-based optimization model to define the complex freight delivery cost relationships among delivery
workers, building managers, and city planners, based on the real-world observations of the final 50 ft of urban
freight activities at an office building in downtown Seattle, Washington, U.S.A. Our discrete-event simulation
model with increasing delivery arrival rates showed an inverse relationship in costs between delivery workers
and building managers, while the cost of city planners decreased up to ten deliveries/h and then increased
until 18 deliveries/h, at which point costs increased for all three parties and overflew the current building and
parking resources. The optimal numbers of resources that would minimize the costs for all three parties were
then explored by a non-dominated sorting genetic algorithm (NSGA-2) and a multi-objective, evolutionary
algorithm based on decomposition (MOEA/D). Our study sheds new light on a data-driven approach for
determining the best combination of resources that would help the three entities work as a team to better
prepare for the future demand for urban goods deliveries.
1. Introduction

Urban freight efficiency has become highly dependent on the suc-
cessful management of urban infrastructure given rapid urbanization
and the explosion of e-commerce. Urban freight transport increases
accessibility to resources and trade markets by collecting, transporting,
and distributing goods within urban areas. Urban freight transport
plays a crucial role in economic growth and the promotion of sus-
tainable and livable cities (He and Haasis, 2020). In recent years,
urban freight policy has been challenged by the complexity and cost
of last-mile deliveries, as well as increasing congestion and pollutant
emissions (Bergmann et al., 2020). To better prepare for future urban
logistics, researchers have emphasized the importance of innovation
in every aspect of traffic management, urban planning, and urban
warehouse design (Browne et al., 2018). As past research has rec-
ognized that delivery processes rely on transportation networks and
systems, the major focus has been on network optimization in last-
mile deliveries (Sakai et al., 2020). This focus has showcased other
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activities during the final 50 ft that merit further study, including
unloading/loading activities, use of freight elevators, pick-up/delivery
operations, and the implications of these activities for building and
parking infrastructure design (Kim et al., 2018b).

Delivery process does not end until the package is delivered to the
final customer (Kim et al., 2018b). The process time spent outside
of the vehicle, including indoor walking time, can be much longer
than the driving time, as much as 87% of the entire urban freight
delivery process (Allen et al., 2000; Álvarez and De la Calle, 2011).
Analyzing the final 50 ft of urban freight delivery is important because
excessively long stays by delivery workers could contribute to the lack
of curbside space and urban congestion (Rhodes et al., 2012). However,
data within the final 50 ft of delivery activities are extremely limited,
and building and parking requirements and policies are often developed
without substantial supporting data (Shoup, 2020). Although these
parking policies can greatly impact architecture and urban designs,
vailable online 25 July 2022
590-1982/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.trip.2022.100656
Received 18 April 2022; Received in revised form 7 July 2022; Accepted 15 July 2
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

022

http://www.elsevier.com/locate/trip
http://www.elsevier.com/locate/trip
mailto:haenakim@uw.edu
https://doi.org/10.1016/j.trip.2022.100656
https://doi.org/10.1016/j.trip.2022.100656
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Transportation Research Interdisciplinary Perspectives 15 (2022) 100656H. Kim et al.
Fig. 1. Relationships of city planners, building managers, and delivery workers to parking infrastructure.
which can consequently increase the cost of development, the final
decisions on parking policies are often influenced by elected officials
and other existing parking requirements that are not scientifically
grounded (Shoup, 2020). Analysis of delivery activities at the final
50 ft will produce valuable information and assets to help policymakers
understand current parking situations and create data-driven parking
policies that can meet future demand. Creating efficient parking poli-
cies is also important because a lack of curbside space can increase
urban congestion. For example, delivery vehicles may be forced to
circle city blocks multiple times looking for parking spaces (Rhodes,
2012). In this study, we aimed to close this research gap by providing
useful simulation and optimization tools that will better reveal the
freight delivery cost dynamics among delivery workers, building man-
agers, and city planners, as well as better estimate adequate numbers
of building and parking resources to help policymakers readily prepare
for an increasing demand for urban delivery of goods.

This study applied a multi-objective optimization method, combined
with a discrete event simulation (DES), also known as simulation-based
multi-objective optimization (SMO) (Lidberg et al., 2019). A DES was
first used to account for complex delivery movements inside of an
office building in downtown Seattle, Washington, U.S.A. Using a DES
model that reflected the real-world infrastructure would allow us to
understand the impact of freight cost on delivery workers, building
managers, and city planners. We then estimated the numbers of build-
ing and parking resources that could minimize costs associated with
freight deliveries for all three groups.

There were three main objectives in the problem formulation:

1. Minimize the costs for delivery workers.
2. Minimize the costs for building managers.
3. Minimize the costs for city planners.

This model can provide insights into infrastructure design that can
benefit both the users (e.g., delivery companies) and planners (e.g., city
planners, building managers) of building and parking infrastructure.

Fig. 1 shows the relationships of city planners, building managers,
and delivery workers to parking infrastructure as an example.

2. Literature review

Future infrastructure design should consider the evolving nature of
people’s shopping behaviors and the various delivery methods possible,
given advanced technologies.
2

Although various simulation and optimization tools have been used
in transportation research, they have been limited to solving multiple
objectives within a single organization, rather than used to understand
the complex dynamics among different parties and to maximize ben-
efits for all. This study shed new light onto potential applications of
simulation and optimization tools to achieve common transportation
goals for multiple organizations.

2.1. Parking and building infrastructure

McDonald and Yuan (2021) extensively reviewed the zoning code
requirements for loading zones throughout the United States, empha-
sizing the lack of a systematic approach to determining the supply of
loading zones (McDonald and Yuan, 2021). The current urban planning
policies and practices showed that there are significant variations in off-
street loading requirements while on-street loading spaces are designed
ad hoc or based on the requests by local businesses (McDonald and
Yuan, 2021).

With limited urban spaces and rapid growth in deliveries, many
European cities demonstrated efforts on providing regulations on pro-
viding loading spaces. For example, the City of Paris Transportation
Department required loading and unloading areas for the main freight
generators according to their generated freight volumes (City of Paris,
2016). The City of Barcelona required off-street spaces based on the
size of the buildings and their land use (City of Barcelona, 1999). On
the other hand, Morries (2004) points out that the number of off-street
loading bays in New York has been unchanged for several decades,
while deliveries to commercial properties have grown exponentially
over the past years (Morris, 2004). Morris (2009) also points out the
lack of requirements for building infrastructure such as the number
of freight elevators in commercial buildings of many American cities,
including Atlanta, Boston, Chicago, Dallas, New York, and Seattle (Mor-
ris, 2009). McDonald and Quan also implied the slow promotions for
such changes in American cities (McDonald and Yuan, 2021).

Potential rationales for this could be a lack of communication be-
tween the public and private sectors. Although off-street parking spaces
and building infrastructure can be regulated by city officials, they need
to be designed with new construction and they are mainly managed by
private building managers. Without good communication between the
public and private sectors, it is difficult for city planners to understand
the building’s potential delivery issues at the micro-level. The scarcity
between public and private sectors could have contributed to the slow
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changes in regulations for the off-street parking spaces and building
infrastructure in our cities. The City of Seattle Final 50 ft Program
of exploring commercial vehicle dwell times (Kim et al., 2021) and
parking behaviors (Girón-Valderrama et al., 2019) are good examples
of the collaborative efforts between the public and private sectors to
improve freight delivery systems. McDonald and Quan also emphasized
the importance of engagement from multiple organizations to coordi-
nate actions to improve cities’ limited freight loading spaces (McDonald
and Yuan, 2021).

As compared to off-street parking, on-street loading zones can be
flexibly determined by municipalities. With increased numbers of de-
liveries, urban cities are making efforts to improve physical spaces
for commercial vehicles by increasing and relocating on-street parking
spaces. New York City’s ‘Commercial Vehicle Parking Plan’ initiated
offering additional curbside spaces for commercial vehicles (U.S. De-
partment of Transportation, 2009). Philadelphia reserved 80 to 100 ft
as an all-day loading zone in busy downtown (Calvert, 2019). Wash-
ington, D.C.’s ‘Downtown Curb-space Management Plan’ attempted to
improve commercial vehicle loading zones (CVLZs) by relocating to
the end of each block face wherever possible to make parking easier
for commercial vehicles and extending the loading zones on K Street
from 40 ft to 100 ft to increase commercial parking capacity (Jones
et al., 2009). However, the efficiency of locating the parking at the
end of the block was later questioned by Campbell et al. (2018) who
found that it can increase parking time by about 4%, as the parking is
farther away from the delivery locations (Campbell et al., 2018). This
demonstrates the need for data-driven approaches and complexity in
commercial vehicle parking policies.

On-street loading zones are crucial for those buildings without
off-street loading spaces, especially older buildings. However, Mcdon-
ald and Quan identified that provision of these spaces is often ad
hoc (McDonald and Yuan, 2021). Although cities like Philadelphia
offer an application for a new loading zone to local businesses (The
Philadelphia Parking Authority, 2011), on-street parking spaces are
competed by other transportation use such as bus lanes and passenger
load zones. This requires a high degree of coordination across agencies
when making changes to on-street loading zones. Our simulations and
optimization cost models can be used as a valuable communication
tool between key agencies as they can quantify the current and future
impacts based on the supply and demand of limited parking and
building resources.

Not only providing more spaces for on- and off-street loading spaces,
but also assessing utilization of these spaces is important. Brown et al.
found that on-street commercial parking spaces in Paris were highly
underutilized (47% of the time unused and another 47% of the time
misused by passenger vehicles), and only 6% of the time was used
for loading spaces legitimately (Browne et al., 2007). In Belo Hori-
zonte, Brazil, De Oliveira and Guerra found that on-street loading and
unloading spaces were occupied more by passenger vehicles (57% of
the time) than freight vehicles which used the spaces for only 35%
of the time (Oliveira and Guerra, 2014). Demands and utilizations for
CVLZs by commercial vehicles can be varied by land-use type (Girón-
Valderrama et al., 2019), adding complexity to parking management
for commercial vehicles. This means that the one-size-fits-all approach
is likely to be unsuccessful. To manage commercial vehicle demands
for on- and off-street parking spaces, systems such as demand-based
pricing (Pierce and Shoup, 2013) and loading bay booking program
has been studied (McLeod and Cherrett, 2011). However, the San Fran-
cisco County Transportation Authority report emphasizes the unique
challenges in managing commercial loading demand because commer-
cial loading demand does not have flexibility like passenger vehicles
which can switch travel patterns or modes based on the availability of
parking spaces (San Francisco County Transportation Authority, 2015).
Regardless of the supply of loading zones, deliveries are made in busy
urban areas where there are few alternatives to a truck or other delivery
3

modes.
Delivery systems with increased delivery demands and misused
parking spaces could easily result in unauthorized parking behaviors
because delivery workers are left with options such as cruising until
finding other parking spaces or double-parking in unauthorized ar-
eas (Dalla-Chiara and Goodchild, 2020). The capacity of the roadway
could be decreased by unauthorized parking which will inevitably con-
tribute to congestion and traffic safety negatively. A survey conducted
in Paris in 2006 pointed out that 75% of all deliveries in the city were
made with unauthorized parking behaviors (Browne et al., 2007). In
New York City Studies, delivery vehicles usually pay $ 500 to $ 1000
per truck per month for parking fines (Holguín-Veras et al., 2011).
The intention of discouraging unauthorized parking through fines is
often voided as delivery companies expect to pay for parking fines
and allocate costs for them intentionally (Wenneman et al., 2015).
Downtown Seattle also showed that 40 percent of commercial vehicles
parked in unauthorized locations including passenger vehicle loading
zones (PLZs), the middle of the road, tow-away zones, and no-parking
zones (Girón-Valderrama et al., 2019). With increasing challenges cre-
ated by commercial vehicle parking systems in cities, it is important
to understand the impacts of increasing demands on our building and
parking infrastructure.

2.2. The future of deliveries

Embracing new technologies, retailers are constantly making efforts
to revolutionize shopping experiences for their customers. For an op-
timal mobile user experience, corporations are adopting technology
innovations such as progressive web applications and accelerated mo-
bile pages (Shopify, 2020). Voice assisted devices such as Amazon Alexa
and Google Assistant are another way that shopping has been made
easier. The artificial intelligence and machine learning technology in
these devices allow customers to purchase goods and groceries online
with improved customer services (Shankar et al., 2020). Loup Ventures
expects that 75 percent of U.S. households will have smart speakers by
2025 (Kinsella, 2019), which may have a ripple effect on increasing
online shopping behaviors. Retailers have recently been trying ‘‘offline
to online’’ (also called O2O) services, which open up the store for
display purposes only, allowing customers to try physical goods offline
but complete buying/selling online (Visser et al., 2014). For example,
Nike’s new physical stores allow users to try exclusive products, cus-
tomize products onsite, and partake in fitness tests, experiences that
online shopping cannot offer (Nike Inc., 2018). In another example,
Nordstrom expanded its ‘‘Reserve Online and Try in Store’’ services
to nearly 40 stores across the U.S. in 2017 after a successful pilot
project in the fall of 2016 (Nordstrom, 2017). With rapidly changing
advancement in technologies, customers’ expectations for shopping are
changing, most likely leading to the demand for goods and services in
urban areas to increase.

The COVID-19 pandemic shifted shopping to on-line. More people
were also highly dependent on online platforms for food given limited
public transportation, reduced store hours, and higher risk of COVID-19
exposure at brick-and-mortar stores.

The rate of e-commerce adoption during the pandemic has long-
term impacts (Adobe Analytics, 2020). Gatta et al. (2020) studied the
potential acceptability and adoption of ‘‘e-grocery’’ shopping (purchase
of groceries online), pointing out that changes in such shopping be-
havior would substantially impact how goods reach houses, as buying
groceries is a recurrent activity for any household (Gatta et al., 2020).
While technologies are changing people’s shopping experiences faster
than ever, most cities’ infrastructure designs and policies lack rigorous
data collection and scientific approaches. As our simulation and op-
timization models accounted for real-world observations in the final
50 ft of deliveries, we focused on providing data-driven tools that
policymakers can use to better understand the dynamics of current and

future urban freight deliveries.
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2.3. Methods to optimize resource allocation

2.3.1. Simulation techniques
Simulation techniques are widely used in much operational research

to assist in decision making for system analysis and improvements (Uri-
arte et al., 2015). The simulation approach is popular not only for
transportation but also for health care, production lines, and businesses.
Simulation models are useful for understanding complex system flows
over time. They are also useful for testing ‘‘what if’’ scenarios and pre-
dicting system performance before any plans have been implemented.
Choosing an appropriate approach among many types of simulations is
crucial.

There are many types of computer-based simulations, such as sys-
tem dynamics (SD), agent-based (AB), and discrete-event simulations
(DES) (Brailsford et al., 2009). Borshchev and Filippov (2004) stated
that whereas SD deals mostly with continuous processes, DE and
AB work mostly in discrete time (i.e., moves from one event to an-
other) (Borshchev and Filippov, 2004). This section explores various
types of simulation tools and summarizes our rationale for choosing
DES over other types of simulation tools for our study.

SD simulation, which was developed by electrical engineer Jay W
Forrester in the 1950s, is defined as ‘‘the study of information-feedback
characteristics of industrial activity to show how organizational struc-
ture, amplification, and time delays (in decisions and actions) interact
to influence the success of the enterprise’’ (Forrester, 1958, 1968). SD
represents the real-world process as stocks (e.g., of material, knowl-
edge, people, money), flows between those stocks, and information
that determines the value of the flows. Because SD stocks do not have
individuality and the SD needs to consider global structural depen-
dencies, SD simulation is best suited for describing system behavior
as several interacting feedback loops, balancing or reinforcing them
with three to four tools that are very similar to each other (e.g., piston
motion) (Borshchev and Filippov, 2004).

AB simulation is often called ‘‘bottom-up’’ modeling (Schieritz and
GroBler, 2003) because AB does not have global system behavior
up front. Instead, behaviors at an individual level are defined first,
and then the complex global behavior emerges as a result of many
individuals interacting with each other, living in some environment to-
gether (Borshchev and Filippov, 2004). The big advantage of using AB
simulation is that models can be constructed without knowledge about
global inter-dependencies (Borshchev and Filippov, 2004). Therefore,
AB simulation has been a popular tool to model parking behaviors of
individual drivers and to study driver’s dynamic decision making pro-
cesses in response to changes of surrounding traffic conditions (Benen-
son et al., 2008; Zhang et al., 2014; Ni and Sun, 2018). AB simulation
approach has also been used for locating parking variable messaging
signs as the simulation can be constructed to provide information such
as cruising process, parking choice behavior and traffic assignment (Ni
and Sun, 2018; Sun et al., 2016).

DES was developed by Geoffrey Gordon, who evolved the idea for
the General Purpose Simulation System and introduced IBM imple-
mentations (Gordon, 1978). DES models comprise entities that enter
a system and travel through multiple steps before leaving the system.
Each step represents a discrete timestamp (i.e., event) that alters the
state of entities. Each event can be described in terms of resources
and their capacity and efficiency. In DES, entities act as a passive
element of the system, and therefore, the entity will wait until its turn
if the resources are pre-occupied with other entities. In this way, DES
incorporates queuing in the model and is able to discover bottlenecks
and measure system performance (Lebeau et al., 2013).

The DES model was most suitable for this study, as we could sim-
ulate delivery workers (entities) traveling through a building (system),
using the building and parking resources (resources). Through DES, we
were interested in learning about the utilization of building and parking
resources under different ‘‘what-if’’ scenarios. DES requires specific
4

data for on-time distribution for each activity (Layeb et al., 2018).
Fortunately, a complex delivery process and detailed activities had been
documented in a discrete event flowchart with time distributions for
each delivery task during a previous study conducted by Kim et al.
(2018b). With this previously obtained empirical data, we built our DES
model with realistic complex stochastic distributions.

2.4. Simulation-based optimization approach in transportation research

Although DES can provide the results of specific ‘‘what-if’’ scenar-
ios based on the complex and stochastic flows of delivery workers,
the optimal solution is not guaranteed (Uriarte et al., 2015). There-
fore, an additional optimization tool was required to find the optimal
solution (AlDurgham and Barghash, 2008) even though simulation
and optimization have traditionally been considered to be different
approaches in the operational research domain (Figueira and Almada-
Lobo, 2014). Numerous recent studies have used a combination of
optimization and simulation tools and confirmed their effectiveness
at making quick decisions about optimal system configurations and
complex integrated facilities (Uriarte et al., 2015). As meta-heuristic
optimization can quickly identify good quality solutions, it has usu-
ally been used in combination with DES (Figueira and Almada-Lobo,
2014). When there are multiple objectives, simulation-based, multi-
objective optimization (SMO) can search for trade-offs between several
conflicting objectives to find the optimal solutions (Deb, 2011). Several
meta-heuristic algorithms have been developed for simulation-based
optimization, such as the genetic algorithm, scatter search, pychoclonal
algorithm, hybrid algorithm, and nondominated sorting generic al-
gorithm (NSGA II). Among these algorithms, NSGA II is the most
commonly used for simulation-based optimization (Avci and Selim,
2017).

The simulation-based optimization approach has been widely used
in transportation and logistics studies. Optimizing the costs of deliveries
has been one popular topic. Yanchuk et al. (2020) conducted a sim-
ulation of cost optimization for package delivery with a combination
of carriers for fast (same day or next day) and lazy (not the nearest
day or week) deliveries (Yanchuk et al., 2020). Avici and Selim (2017)
used SMO to develop a supply chain inventory management system
by determining suppliers’ flexibility and safety stock levels in terms of
inventory holding costs and premium freight (i.e., expedited shipping
with high costs such as airways) (Avci and Selim, 2017).

Transportation routing networks have been another area of popular
research using simulation-based optimization. Poeting et al. (2019) and
Simoni et al. (2020) simulated last-mile delivery routes to optimize
them with delivery robots (Poeting et al., 2019; Simoni et al., 2020).
Anderluh et al. (2019) utilized SMO to select the best routes given
trade-offs between the economic objective of minimizing delivery costs
and the social objective of minimizing the negative impacts of delivery
vehicles, such as noise and congestion (Anderluh et al., 2019). Sim-
ilarly but for transit, Schmaranzer et al. (2019) designed a complex
urban mass rapid transit system by using SMO to minimize the cost
of fleets and maximize service levels (e.g., average waiting time per
passenger) (Schmaranzer et al., 2019). Layeb et al. (2018) approached
scheduling problems in stochastic, multimodal freight transportation
systems with a simulation-based optimization model (Layeb et al.,
2018).

Optimization approaches have also been applied in selecting opti-
mal locations of facilities and managing parking systems. Jardas et al.
(2020) selected an optimal location for a distribution center that would
minimize delivery costs by considering the distance between a start
point and the destination (Jardas et al., 2020). Wei (2020) found op-
timal network nodes and passages of urban underground logistics that
would minimize logistic time cost, exhaust emissions, and congestion
costs (Wei et al., 2020). To determine advanced parking strategies such
as dynamic pricing, Zheng and Geroliminis (2016) applied optimization
to reduce congestion and lower the total travel costs of all users (Zheng

and Geroliminis, 2016).
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Although much research has used simulation-based optimization
in the transportation and logistics fields, no study has utilized SMO
to optimize building and parking resources. On the other hand, re-
search in the fields of healthcare and production lines has a long
history of using simulation-based optimization to determine resource
allocations for improving system performance. For example, multiple
buffer allocation studies have determined optimal buffer capacities by
maximizing throughput rates while minimizing total resource capaci-
ties for production lines. Motlagh et al. (2019) produced an extensive
literature review on research since 2000 that has used buffer allocation
problems (Mosayeb Motlagh et al., 2019). Since the 1990s, the health-
care field has applied SMO to study the optimal number of expensive
medical devices in an emergency (or surgical) department that can
minimize the costs of medical resources while maximizing service levels
for patients (e.g., minimizing waiting time) (Lin et al., 2013; Uriarte
et al., 2015; Feng et al., 2017; Chen and Wang, 2016). Similarly, SMO
can be applied to optimize a city’s parking and building infrastructure,
considering not only the city’s constraints (e.g., limited parking spaces
and costs) but also the costs of delivery workers and building managers.
For example, if the city increases the number of on-street parking spaces
simply because of increased numbers of deliveries, then delivery queues
of deliveries will be transferred to the queues at elevators or recep-
tionists, pushing the costs from delivery workers to building managers.
Conversely, if city or building managers decrease the numbers of on-
and off-street parking spaces without proper analysis, then the costs
may be pushed to delivery workers who use the urban infrastructure.
SMO can help reveal the complex relationships among different parties
and balance such ambiguity in parking and building policies.

In this study, SMO was developed to optimize building and parking
resources in order to minimize the costs for three parties: city planners,
building management, and delivery workers.

3. Simulation and optimization designs

This research evaluated the impacts of increasing demand for urban
goods deliveries on parking and building operations through simulation
models. Data collected from an office building in downtown Seattle,
Washington, U.S.A., were used to model the final 50 ft of the delivery
process in our discrete event simulation model. In a previous study,
the data-collection process took place over five business days between
January 31 and February 4, 2017, between the hours of 9:00a.m. and
4:00p.m. Trained data collectors shadowed delivery workers (n = 31)
t freight-attracting urban buildings and collected data on the time
istributions associated with each delivery task by using a customized
obile app (Kim et al., 2018a). Their task time distributions and dwell

imes (the moment when the vehicle was parked until the vehicle left
he site) were used to validate the simulation model. The details of the
ata collection process can be found in Kim et al. (2018b).

In Python software (version 3.8), the discrete event simulation was
uilt by using a SimPy package (version 4.0.1). Once the simulation
ad been validated to replicate real parking durations with an ob-
erved delivery arrival rate of four deliveries per hour (the baseline
cenario), then varied delivery arrival rates were applied as inputs to
nderstand the cost dynamics between different parties (scenarios).
fter the simulation model showed several scenario results, a possible
ear-future delivery rate was chosen, and the optimization algorithms
NSGA II and MOEA/D) were utilized through the Pymoo package (ver-
ion 0.4.1). The optimization can help decision makers determine the
ptimal numbers of parking and building resources to better prepare
dequate numbers of resources at the chosen delivery arrival rate. A
alue stream map was used to create a computer simulation model
nd represent essential process delivery steps in the final 50 ft. Five
mportant variables (i.e., numbers of on- and off-street parking spaces,
ecurity guards, elevators, and receptionists) were selected as decision
ariables to calculate the costs for delivery workers, building managers
nd city planners.
5

Although the real-world environment involves complex dynamism
nd uncertainty which affect the formulation of the optimization in-
luding input data and constraints, metaheuristic algorithms may solve
versimplified models of real systems with the deterministic inputs and
onstraints. This may lead to casting doubts on the validity and rec-
mmendations from its results alone. Therefore, combining simulation
ith metaheuristics has been gaining popularity as an effective proce-
ure to deal with complex combinatorial optimization problems (Fer-
eira, 2013; Chica et al., 2017). Our proposed method of combining
etaheuristics and simulation can offer solving large-scale stochastic

ptimization problems as a natural extension of metaheuristic in trans-
ortation logistics. The assumptions in our models are grounded not
nly in the literature but also on the expertise of industry experts from
arious logistic companies who participated in the data collection.

.1. Problem formulation

A multi-objective optimization model was formulated to identify the
ptimum numbers of parking spaces, staff, and elevators to minimize
reight delivery costs for city planners, building managers, and delivery
orkers. The indices, decision variables, boundaries, input parameters
f this model, and cost objective functions are defined in this section.
e were interested in exploring the cost impact on the off-street park-

ng separately because the city’s off-street parking spaces are designed
nd managed by the city planners rather than building managers.
herefore, city planners’ perspective may focus more on the utilization
f off-street parking and unauthorized parking frequencies, separately
rom the building manager’s point of interest. This is reflected in our
ost function for city planners.

Indexes:

i :Index of building staff (𝑖 = 1,… , 𝐼) such as security guard,
receptionist

j :Index of building resources (𝑗 = 1,… , 𝐽 ) such as elevator,
off-street
parking spaces (e.g., loading bay) for commercial parking

k :Index of on-street parking type such as commercial parking,
un-authorized parking (e.g., double parking)

Decision variables:

𝑋𝑖 : Number of building staff types i
𝑋 : Vector of the number of building staff types, X =

[𝑋1,… , 𝑋𝐼 ]
𝑌𝑗 : Number of building resource types j
𝑌 : Vector of the number of building resource types, Y =

[𝑌1,… , 𝑌𝐽 ]
𝑍𝑘 : Number of on-street parking types k
𝑍 : Vector of the number of on-street parking k, Z =

[𝑍1,… , 𝑍𝐾]

Upper and lower boundaries for decision variables:

𝑙𝑖 : Minimum number of building staff type i
𝑙𝑗 : Minimum number of building resources type j
𝑙𝑘 : Minimum number of on-street parking type k
𝑢𝑖 : Maximum number of building staff type i
𝑢𝑗 : Maximum number of building resources type j
𝑢𝑘 : Maximum number of on-street parking type k
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𝑓

𝐷

Simulation parameters:

𝑅 : Total simulation replications
𝑟 : Index for simulation replications (r = 1, . . . , R)
𝑛 : Index for delivery vehicles
𝑁 : Total delivery vehicles in a building
𝑚 : Index for resources used (can be 𝑋𝑖, 𝑌𝑗 , 𝑍𝑘,𝑊𝑜)
𝑆𝑡𝑎𝑟𝑡 : Arrival time of delivery vehicle
𝐸𝑛𝑑 : Departure time of delivery vehicle
𝑓 : Total number of goods that failed to be delivered
𝑢𝑛𝑎𝑢 : Total number of unauthorized parking occurrences
𝑐𝑓 : Failed delivery cost
𝑐𝑑 : Labor cost for delivery worker n
𝑐𝑖 : Labor cost for building staff i
𝑐𝑗 : Operational cost for building resource type j
𝑐𝑘 : Operational cost for on-street parking type k
𝑐𝑢𝑛𝑎𝑢 : Environmental cost for unauthorized parking
𝑢𝑖𝑚 : Utilization rate of resource m for the building staff
𝑢𝑗𝑚 : Utilization rate of resource m for the building

resource type j
𝑢𝑘𝑚 : Utilization rate of resource m for the on-street parking

type k

Multi-objective functions:
1. Minimize delivery worker’s costs (DC):

𝑓1(𝑋, 𝑌 ,𝑍) = �̂�[𝐷𝐶(𝑋, 𝑌 ,𝑍; 𝜉)] =
∑𝑅

𝑟=1 𝐷𝐶(𝑋, 𝑌 ,𝑍; 𝜉)𝑟
𝑅

(1)

2. Minimize building manager’s waste costs (BWC):

𝑓2(𝑋, 𝑌 ,𝑍) = �̂�[𝐵𝑊 𝐶(𝑋, 𝑌 ,𝑍; 𝜉)] =
∑𝑅

𝑟=1 𝐵𝑊 𝐶(𝑋, 𝑌 ,𝑍; 𝜉)𝑟
𝑅

(2)

3. Minimize city planner’s waste costs (CWC):

3(𝑋, 𝑌 ,𝑍) = �̂�[𝐶𝑊 𝐶(𝑋, 𝑌 ,𝑍; 𝜉)] =
∑𝑅

𝑟=1 𝐶𝑊 𝐶(𝑋, 𝑌 ,𝑍; 𝜉)𝑟
𝑅

(3)

Cost functions for DC, BWC, CWC:
DC estimator:

𝐶(𝑋, 𝑌 ,𝑍; 𝜉)𝑟 = (
∑𝑁

𝑛=1(𝐸𝑛𝑑𝑛 − 𝑆𝑡𝑎𝑟𝑡𝑛)
𝑁

)𝑟 ∗ 𝑐𝑑
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Length of stay cost

+ (
∑𝑁

𝑛=1(𝑓 )
𝑁

)𝑟 ∗ 𝑐𝑓
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Failed delivery cost

(4)

BWC estimator:
𝐵𝑊 𝐶(𝑋, 𝑌 ,𝑍; 𝜉)𝑟

=
∑

𝑖

𝑋𝑖
∑

𝑚=1
𝑐𝑖 ∗ (1 − 𝑢𝑖𝑚) +

∑

𝑗

𝑌𝑗
∑

𝑚=1
𝑐𝑗 ∗ (1 − 𝑢𝑗𝑚)

= (
∑

𝑖
𝑋𝑖 ∗ 𝑐𝑖 +

∑

𝑗
𝑌𝑗 ∗ 𝑐𝑗 )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Resource costs

− (
∑

𝑖

𝑋𝑖
∑

𝑚=1
𝑐𝑖 ∗ 𝑢𝑖𝑚 +

∑

𝑗

𝑌𝑗
∑

𝑚=1
𝑐𝑗 ∗ 𝑢𝑗𝑚)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Utilization cost

(5)

CWC estimator:
𝐶𝑊 𝐶(𝑋, 𝑌 ,𝑍; 𝜉)𝑟

=
∑

𝑖

𝑍𝑘
∑

𝑚=1
𝑐𝑘 ∗ (1 − 𝑢𝑘𝑚) +

∑

(𝑢𝑛𝑎𝑢) ∗ 𝑐𝑢𝑛𝑎𝑢

= (
∑

𝑘
𝑍𝑘 ∗ 𝑐𝑘)

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
Resource costs

− (
∑

𝑘

𝑍𝑘
∑

𝑚=1
𝑐𝑘 ∗ 𝑢𝑘𝑚)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Utilization cost

+
∑

(𝑢𝑛𝑎𝑢) ∗ 𝑐𝑢𝑛𝑎𝑢
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

(6)
6

Unauthorized parking cost
Subject to:

𝑙𝑖 ≤ 𝑋𝑖 ≤ 𝑢𝑖 ∀𝑖 (7)

𝑙𝑗 ≤ 𝑌𝑗 ≤ 𝑢𝑗 ∀𝑗 (8)

𝑙𝑘 ≤ 𝑍𝑘 ≤ 𝑢𝑘 ∀𝑘 (9)

𝑋𝑖 ≥ 0 ∀𝑖 (10)

𝑌𝑗 ≥ 0 ∀𝑖 (11)

𝑍𝑘 ≥ 0 ∀𝑖 (12)

The mathematical models are explained as follows:
Eq. (1) describes the minimal average cost of delivery workers who

make deliveries to the building (DC), where 𝜉 indicates the stochastic
effect. The minimal average DC includes two parts: (a) minimum length
of stay cost, (b) minimum failed delivery cost. Given each simulation
replication r, the average DC of all deliveries is estimated according
to Eq. (4). Therefore, the average DC (�̂�[𝐷𝐶(𝑋, 𝑌 ,𝑍; 𝜉)]) across multi-
ple replications is predicted with Eq. (1) and is applied to approximate
a true DC performance 𝑓1(𝑋, 𝑌 ,𝑍) under a given number of all staff
and building and parking resources.

Eq. (2) describes the minimal average building manager’s waste
costs (BWC), where 𝜉 indicates the stochastic effect. The minimal
average BWC includes two parts: (a) minimum building resource costs,
(b) maximum utilization costs for building resources. Given each sim-
ulation replication r, the average BWC of all deliveries is estimated
according to Eq. (5). Minimizing total BWC will result in minimizing
resource costs and maximizing the utilization rate for resources simul-
taneously. Therefore, the average BWC (�̂�[𝐵𝑊 𝐶(𝑋, 𝑌 ,𝑍; 𝜉)]) across
multiple replications is predicted with Eq. (2) and is applied to ap-
proximate a true BWC performance 𝑓2(𝑋, 𝑌 ,𝑍) under a given number
of all staff and building and parking resources. It is important to
note that our observations were limited to delivery-related activities
only (e.g., security guards checking in/out for the delivery workers,
receptionists receiving goods, and signing off the packages). In the
model, we assumed that building staff (e.g., 𝑋1: security guard and
𝑋2: receptionists) were exclusively dedicated to taking delivery-related
activities, and all other activities performed were considered idling,
resulting in the wasted costs. For future research, the cost function
can be expanded to account for the overall costs that includes other
activities (e.g., security guards patrolling the building, receptionists
answering the calls, etc.) as productive actions of building staff.

Eq. (3) describes the minimal average waste costs for city planners
who manage on-street parking and unauthorized parking (CWC), where
𝜉 indicates the stochastic effect. The minimal average CWC includes
three parts: (a) minimum on-street parking operational costs, (b) maxi-
mum utilization costs for on-street parking spaces, and (c) unauthorized
parking costs. Given each simulation replication r, the average CWC of
all deliveries is estimated according to Eq. (6). Minimizing total CWC
will result in minimizing resource costs and maximizing the utilization
rate for resources simultaneously. Additionally, the total unauthorized
parking number is multiplied by the environmental costs, as unautho-
rized parking will affect the surrounding environment (e.g., congestion,
noise, etc.). Therefore, the average CWC (�̂�[𝐶𝑊 𝐶(𝑋, 𝑌 ,𝑍; 𝜉)]) across
multiple replications is predicted with Eq. (3) and is applied to approx-
imate true CWC performance 𝑓3(𝑋, 𝑌 ,𝑍) under a given number of all

on-street parking resources.
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Fig. 2. Simplified delivery process flow map.
Fig. 3. Definitions of parking and dwell time.
3.2. Problem description

This study looked at the process flows in the final 50 ft of urban
freight deliveries (see Fig. 2). The delivery workers’ arrival interval
times and service times for each delivery followed specific stochastic
distributions based on field observations. Our model presumed that the
type of resources such as building staff (e.g., security guard, reception-
ist) and resources (e.g., parking, elevator) did not change dynamically
over time. Under such pre-established conditions, our multi-objective
optimization allocation problem was studied. This study aimed to
obtain the most viable solutions for allocating adequate amounts of
resources to better prepare for increased demands for urban freight
deliveries, given restricted building and parking resources. The building
and parking resources that were used in this work included the number
of building staff (𝑋1 = security guard, 𝑋2 = receptionist), the number
of building resources (𝑌1 = off-street parking, 𝑌2 = elevator), and the
number of on-street parking spaces (𝑍1 = on-street parking).

3.3. Delivery flow

Delivery workers’ out-of-vehicle activities inside urban buildings
were simulated based on field observations from an office building
in downtown Seattle. Time in the system was categorized into two
sections: time associated with parking activities and dwell time. Fig. 3
shows the definitions of parking and dwell time referred to in this
paper.

When a delivery worker arrived at the building, on-street and off-
street parking spaces were filled first. Both on- and off-street parking
7

were assumed to have no queue, reflecting real-world commercial
vehicle parking behaviors. When both on- and off-parking spaces were
full, then delivery workers were assumed to park at unauthorized
areas or leave the building, failing to deliver. Because resources such
as security check-in and elevators had to be used in each direction
when the building was entered and exited, the resources were shared
between delivery workers who entered and exited the system. For
example, when there were queues at the security booth and elevator,
the queues were formed in a first-in-first-out (FIFO) method, containing
a mixture of delivery workers entering and exiting the system. Delivery
workers’ waiting time for using the elevator up and down may only be
approximated by using the entire number of floors in the building and
the frequency of freight elevator usage. Fig. 2 shows the overall process
flow of the simulation model, and the delivery flows are described as
follows.

1. Arrival: Delivery workers can park either at off-street parking or
on-street parking. In case there is no parking lot is available,
delivery workers have the option to park at an unauthorized
parking area (90 percent of the time) or leave the building,
which is considered a failed delivery (10 percent of the time).

1.1. Once parked, delivery workers take time unloading their
goods.

1.2. When unauthorized parking occurs, delivery workers
spend extra time walking from the vehicle to the building.

1.3. They walk from the vehicle (or building entrance) to a
security booth.
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2. Security check-in: Most delivery workers go through a security
check-in to obtain a guest pass to the building. Some bypass
security check-in as they perform regular deliveries (e.g., UPS,
FedEx, etc.).

2.1. Once checked in, they walk from the security booth to the
elevator.

3. Elevator up: All delivery workers take an elevator up to their
delivery destination. Based on the capacity of the elevator, other
delivery workers may be required to wait till others finish using
the elevator either up or down.

3.1. They walk from the elevator to a delivery destination.

4. Delivery: Delivery workers can deliver goods to a receptionist. If
the receptionist has a queue greater than two, delivery workers
either drop off without a receptionist (90 percent of the time) or
fail to deliver (10 percent of the time).

4.1. They walk from the delivery destination to the elevator.

5. Elevator down: All delivery workers take an elevator down. De-
pending on the capacity of the elevator, other delivery workers
may be required to wait till others finish using the elevator up
or down.

5.1. They walk from the elevator to the security booth.

6. Security check-out: Delivery workers are required to return the
guest pass that they obtained when entering the building.

6.1. They walk from the security booth to their vehicle.
6.2. Once returned to their vehicle, delivery workers take time

loading their tools (e.g., dollies).

7. Departure: Delivery workers leave the site.

Several parameters for the simulation were set up according to the
ost parameters in Table 1 and processing time distributions in Table 2.
hese time distributions (e.g., minimum, mode, maximum processing
ime) in Table 2 were based on the real-world data collection described
y Kim et al. (2018b). Cost parameters shown in Table 1 were based
n the Seattle area’s average labor costs for each occupation according
o the U.S. Bureau of Labor Statistics (U.S. Bureau of Labor Statistics,
018). Operational cost and costs for failed delivery and unauthorized
arking were assumed as shown in Table 1. Table 3 indicates the
esource limit parameters, that is, the maximum and minimum amounts
f each resource. The numbers of security guards and receptionists were
imited to small numbers and increased and decreased from the existing
umbers of security guard (n = 1) and receptionists (n = 4). The upper

limits for the number of off-street and on-street parking were slightly
increased numbers from the existing numbers of parking spaces (n =
7 for off-street parking and n = 11 for on-street parking). Rather than
installing a new elevator or removing an elevator, the upper limit of the
number of elevators was limited to two elevators because there were
two existing freight elevators. In this study, the use of freight elevators
could be changed to a passenger elevator if the optimized number of
elevators was the lower limit (n = 1).

Using on-street and off-street parking may lead to differences in
time spent on walking to the security booth and taking the elevator.
However, our model assumes these differences are small and uses the
same walking time distribution that covers walking time from on-street
and off-street parking spaces. The model can be further improved with
different walking time distributions for walking from on-street and off-
street parking spaces specifically. Meanwhile, our model reflects the
longer walking time from unauthorized parking spaces as compared to
those from on-street and off-street parking spaces.

A past study found that the average construction costs for parking
structures in 2015, excluding land costs, were about $24,000 per space
8

Table 1
Resource limit parameters for each building and parking resource.

Model resource Cost ($)

Labor cost of delivery worker $20 per hour
Labor cost of receptionist $18 per hour
Labor cost of security guard $16 per hour
Cost of failed delivery $30
Operational cost of on-street parking $1 per hour
Operational cost of off-street parking $1 per hour
Operational cost of elevator $1 per hour
Cost of unauthorized parking $20

for above ground parking and $34,000 per space for underground
parking (Shoup, 2020). Although building new infrastructure option
can be explored, utilizing existing infrastructure may be considered as
the first option for city planners and building managers due to high
development costs. To provide more realistic options, the costs of on-
and off-street parking spaces and elevators included operational costs
only, rather than the costs for building new infrastructure (e.g., con-
structing new parking spaces or installing a new elevator). This means
that our scope of work was limited to the re-allocation of existing
infrastructure, rather than building new infrastructure. Therefore, the
upper limit for the parking spaces and elevator in the optimized model
were set to the current numbers of resources. For example, when the
optimized number of parking spaces or elevators is smaller than the
current system, city or building managers can decide to transfer the
use of parking spaces that were dedicated for commercial vehicles to
passenger vehicles or the use of freight elevators to passengers, etc.,
rather than removing the current infrastructure. Therefore, the model
results can be still valuable to policymakers for allocating existing
resources as a first step. In a future study, construction costs for parking
spaces and elevators can be added to our cost function to further
investigate the option of building new infrastructure.

4. Optimization algorithms

Given the large solution space (4*4*9*2*14 = 4032) and multi-
objective nature of our model, this study applied two multi
-objective evolutionary algorithms: (1) the population-based NSGA
II to search non-dominated solutions (Pareto-optimal solutions) and
(2) multi-objective evolutionary algorithm based on decomposition
(MOEA/D). NSGA II has been used most commonly for multi-objective,
simulation-based optimization (Avci and Selim, 2017). Similar multi-
objective, simulation optimization algorithms have been used for opti-
mizing resource allocation in emergency departments and healthcare
systems (Feng et al., 2017; Huang, 2016). In this section, the basic
concepts of the selected algorithms are described, while more detailed
descriptions can be found in Deb et al. (2002) for NSGA II and in Zhang
and Li (2007) for the MOEA/D algorithm.

4.1. NSGA II

The nondominated sorting genetic algorithm (NSGA II) is a
population-based algorithm developed by Deb et al. (2002) to search
for multiple non-dominated solutions (Pareto-optimal solutions)
through evolutionary processes. Multi-objective optimization problems
involve conflicting objectives (e.g., one objective increases while the
other decreases). Therefore, there is no global solution but a set of
solutions.

The first non-dominated sorting generic algorithm (NSGA) was pro-
posed by Deb et al. (2002), but three main criticisms followed over the
years: (1) the high computational complexity of non-dominated sorting,
(2) a lack of elitism, and (3) the need to specify the sharing parame-
ter, 𝜎𝑠ℎ𝑎𝑟𝑒, when a parameter-less diversity-preservation mechanism is
esirable. The NSGA II algorithm overcomes these drawbacks.
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Table 2
Processing times of each activity within the simulation model.
Activity Processing/Service times (minutes)

Triangle distribution (min, mode, max)

On-street parking Triangle(9, 12, 165)/60
Off-street parking Triangle(12, 12, 67)/60
Walking from unauthorized parking to building Triangle(5, 8, 20)
Walking from truck (or building entrance) to security booth Triangle(4, 8, 102)/60
Security booth Triangle(2, 9, 156)/60
Unloading goods from truck Triangle(20, 30, 300)/60
Elevator Triangle(4, 35, 635)/60
Walking from elevator to destination Triangle(10, 20, 200)/60
Receptionist Triangle(3, 11, 404)/60
Walking from destination to elevator Triangle(3, 20, 200)/60
Walking from elevator to security Triangle(3, 18, 97)/60
Loading a tool back to vehicle Triangle(5, 30, 100)/60
Table 3
Resource limit parameters of each building and parking resource.

Lower limit (LL) Upper limit (UL)

Number of security guard 1 4
Number of receptionist 1 4
Number of off-street parking 2 10
Number of elevator 1 2
Number of on-street parking 2 15

NSGA II is a kind of genetic algorithm, which is a heuristic optimiza-
ion method inspired by natural evolution that produces better and bet-
er approximations. A new population is generated through a process of
valuating individuals based on their fitness levels to identify an elite
opulation (Pareto set) with a non-dominated sorting algorithm (Feng
t al., 2017). With each generation, the current elite population is
elected to generate new offspring through crossover, mutation, and
epair operators. The fitness values of the current elite population’s
ew offspring are reevaluated to create a new elite population. This
volution process is repeated until the approximate non-dominated
esource allocation solutions are found (the termination condition).

.1.1. Initialization
The combination of decision variables can be designed as a chro-

osome or individual. Each chromosome contains segments of decision
ariables, forming a combination of decision variables. First, the initial
opulation is randomly generated from the minimum and maximum
anges of each decision variable.

.1.2. Fitness assignment and selection
The initialized population is sorted into each front based on non-

omination (elite). A fast non-dominated sorting system partitions all
hromosomes into different non-domination fronts. The first front is the
ompletely non-dominant set in the current population, and the second
ront is dominated by the individuals in the front only. For each front i,
ll solutions of front (i) always dominate front (i+1). The fitness values
re given to each front. For example, the first fronts are assigned fitness
alues of 1, and the second fronts are given fitness values of 2, and so
n. Therefore, the first front is the best level of all fronts among the
opulation.

In addition to fitness value, crowding distance is calculated for
ach individual as a new parameter. Crowding distance is a measure
f Euclidean distance between two individual chromosomes in the
ame front based on their multi-objective fitness values. Large average
rowding distance will result in better diversity in the population.
arents are selected from the population by using binary tournament
9

election based on rank and crowding distance.
4.1.3. Crossover
The selected population generates offspring with crossover and

mutation operators. Crossover is performed to swap parts of a solution
with another in chromosomes to provide mixing of the solutions and
convergence in a subspace. Crossover occurs on two chromosomes
at a time and generates two offspring by combining the features of
both chromosomes under a crossover rate, (𝑝𝑐). There are many dif-
ferent types of crossover. For example, uniform crossover operates
by uniformly selecting genes from either of two chromosomes and
copying them to offspring 1, and the remaining genes are copied to
offspring 2. By default, NSGA uses the real-coded genetic algorithm
simulated binary crossover (SBX) method, which uses a probability
density function that simulates the single-point crossover operator of
the binary-coded genetic algorithm. The mixture of population that
consists of the current population and offspring is sorted again based
on non-domination, and only the best 𝑁 (population size) individuals
are selected.

4.1.4. Mutation
As the crossover operator can generate offspring very similar to

the parents, the new generation may lack diversity. As a way to solve
this issue, the mutation operator randomly changes the value of some
feature of the offspring. A random number between 0 and 1 is generated
to pick which feature is mutated. If this number is lower than a value
called the mutation rate, that variable is flipped. The mutation rate
is usually chosen to be 1/m, where m is the number of features.
This means we mutate one feature of each individual. For NSGA II,
the polynomial mutation is used (further described by Deb and Deb
(2012)).

4.2. MOEA/D

The multi-objective evolutionary algorithm based on decomposi-
tion (MOEA/D) is an evolutionary algorithm that decomposes multi-
objective optimization problems to several single-objective sub-
problems (Zhang and Li, 2007). MOEA/D attempts to optimize these
sub-problems simultaneously. Each sub-problem has its own best so-
lution, which is determined by comparing all solutions found by the
algorithm. Among these sub-problems, the neighborhood relations are
constructed based on the distances between the aggregation coeffi-
cient vectors. Each sub-problem is optimized in MOEA/D by using
information from its neighboring sub-problems. The major advantages
of MOEA/D over Pareto dominance-based MOEAs (e.g., NSGA II) is
that single objective local search techniques can be readily used in
MOEA/D (Peng et al., 2009).

5. Simulation results

The simulation period for this study lasted 8 h (480 min). The first
1 h (60 min) of the simulation constituted the transient period, and

the remaining 7 h represented the steady period. Experimental data
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Fig. 4. Loading bay with seven off-street parking spaces.

were collected during the latter period. The reliability of the simula-
tion results was ensured by applying a sufficient replication number
control (n = 100). Four delivery workers per hour were assumed to
arrive at the modeled building. The current resource allocations for
the building were seven off-street parking spaces (see Fig. 4), eleven
on-street parking spaces, one security guard, four receptionists, and
two freight elevators. Multiple simulation runs with various arrival
rates of delivery workers were performed to understand the impact
of increased numbers of deliveries at an urban building. During the
simulation phase, the decision variables were held constant at current
levels as follows:

• 𝑋1 = 1 security guard
• 𝑋2 = 4 receptionists
• 𝑌1 = 7 off-street parking spaces
• 𝑌2 = 2 elevators
• 𝑍1 = 11 on-street parking spaces

5.1. Validation and verification of the simulation model

To confirm that the delivery process simulation model is an ap-
propriate model that can accurately reflect and represent the concep-
tual model, the following validation and verification processes were
employed.

• Validation process: The model was developed on the basis of real-
world observations of an urban building in Seattle, Washington.
Our data collection processes allowed us to obtain very detailed
time distributions and delivery task sequences for multiple urban
goods deliveries. We also conducted iterative discussions with
representatives from industry experts from logistics companies.

• Verification process: To ensure the quality of the model, mul-
tiple checking procedures on the behavior of the model were
performed by tracing delivery workers’ flows step by step through
a time-advance mechanism and simulation animation by printing
10
Table 4
Simulation results regarding dwell time and cost distribution.

Delivery arrival rate (per hour) Average dwell DW BWC CWC
time (min) ($) ($) ($)

2 (lowest cost for delivery workers) 17.5 5.7 605.2 87.7
4 (current arrival rate: baseline scenario) 17.7 6 602.8 87.5
6 18.4 6.2 600.5 87.2
8 19.2 6.4 598 86.9
10 (lowest cost for city planners) 20.6 7.1 596.5 86.6
12 24.5 8.1 593.7 89
14 28.4 9.5 591.3 105
16 (lowest cost for building manager) 35.7 12.9 586.4 289.3
18 (system overflow- bad for all) 48.1 15.8 587.7 626.1

Note: Holding decision variables constant at current conditions: 𝑋1 = 1 security guard,
𝑋2 = 4 receptionists, 𝑌1 = 7 off-street parking spaces, 𝑌2 = 2 elevators, 𝑍1 = 11 on-street
parking spaces.

customized messages and graphs during the simulation runs.
We also confirmed that the dwell time from a simulation run
resulted in a very similar time distribution to that of real-world
observations under the same constraints.

5.2. Cost distributions with various arrival rates of delivery workers

The simulation results with various arrival rates are summarized in
Table 4. Delivery arrival rates were increased and decreased from the
current arrival rate (four deliveries per hour). As expected, the lowest
cost for delivery workers resulted when the delivery rate decreased to
two deliveries per hour. This makes sense, as there were no queues at
the resources, resulting in the shortest average dwell time for delivery
workers. On the other hand, building costs were the highest because the
resources were idling until deliveries arrived at the building. Therefore,
the cost for delivery workers increased as the delivery arrival rate
increased. Similarly, building manager’s costs decreased as resource
utilization increased with increased numbers of delivery rates until the
system overflowed at the rate of 18 deliveries per hour. A high number
of queues concentrated at one location (e.g., the elevator) resulted in
idling at other locations (e.g., reception). We observed the lowest cost
for city planners at the arrival rate of ten deliveries per hour. This
means that the arrival rate of ten deliveries per hour was the point
at which on-street parking was highly utilized, with no or minimum
instances of unauthorized parking. The CWC increased again at the
arrival rate of 12 deliveries per hour, as the instances of unauthorized
parking increased.

With an increased number of deliveries, our simulation model al-
lowed us to better understand the cost relationships among delivery
workers, building managers, and city planners. The results showed that
the current numbers of resources allocated at the urban building were
not designed for the current arrival rate of four deliveries per hour. For
example, the current building and parking resources were not utilized
at 100 percent capacity with the current arrival rate of four deliveries
per hour. We can visualize this by exploring the utilization rate of the
resources.

5.3. Utilization of resources

At the arrival rate of four deliveries per hour, the resource utiliza-
tion rates are visualized in Fig. 5. As expected, the current on-street (n
= 11) and off-street (n = 7) parking spaces were being used at less than
20 percent of their capacity. Although the security guard (n = 1) was
in service at almost 100 percent of capacity, elevators (n = 2) were in
service at 60 percent of their capacity, and receptionists (n = 4) were
in service at 30 percent of their capacity.

From the simulation, we could also observe the usage of a resource
over the simulation run time. The usage of a resource can be rep-
resented in cumulative average counts or instantaneous behavior for
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Fig. 5. Utilization rate of building and parking resources at the arrival rate of four deliveries per hour.
Fig. 6. On-street parking space usage.
a specific replication. We showed cumulative average counts with a
smoothing effect. For example, when two elevators were constantly
used (e.g., at 16 deliveries per hour) over 480 min, the cumulative av-
erage count for elevators reached close to its capacity of two elevators
on the graph. In Figs. 6 and 7, each line represents one simulation run.
They show the cumulative average counts of on- and off-street parking
spaces over time. As stated before, we assumed that there was no queue
for parking resources. The capacity limits are shown in dotted blue in
the figures. As expected, usage of parking spaces increased as delivery
arrival rates increased. At the current arrival rate of four deliveries per
hour, on- and off-street parking spaces were far too many and were
underutilized, at far lower than their capacity, meaning that parking
spaces were being used at 100 percent over the simulation time frame.

Figs. 8 and 9 show the cumulative average counts of the security
booth and elevators in green and queues in red. Although many queues
were generated at the security booth over time, the overall formation
11
of queues did not exceed its capacity most of the time. This is probably
because delivery workers spent time loading goods before checking in
at the security booth between each delivery, leaving some breathing
time for the security guard to check in each delivery worker. Also,
some delivery workers could bypass the security guard based on their
status (e.g., regular delivery workers such as from UPS or FedEx). On
the other hand, we can see that the queues at elevators accumulated
more than their capacity at the arrival rate of ten deliveries per hour.
At 16 deliveries per hour, the average queue length reached up to 20,
showing that the elevators were the bottleneck of the current system.

5.4. Failed deliveries and unauthorized parking

Failed deliveries and unauthorized parking occurred when both on-
and off-street parking spaces were full. In the simulation, failed deliver-
ies set to occur when the queue at the receptionist desk was more than
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Fig. 7. Off-street parking space usage.
Fig. 8. Security booth usage.
two to replicate delivery workers’ behavior, as long waits in a queue
had led to a failed deliveries during our data collection. Figs. 10 and 11
show the cumulative occurrences of failed deliveries and unauthorized
parking. Each red line represents each simulation run. Failed deliveries
and unauthorized parking started to occur at the arrival rate of 12
deliveries per hour. As expected, as the delivery arrival rate increased,
failed deliveries and unauthorized parking occurrences increased.
12
6. Optimization results

This section summarizes the results obtained by the two optimiza-
tion algorithms, MOEA/D and NSGA II, to minimize costs for delivery
workers, building managers, and city planners. Our optimization mod-
els used the delivery arrival rate of 12 deliveries per hour (higher than
the current arrival rate of four deliveries per hour), given probable
growth in urban deliveries in the future. Therefore, our models could
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Fig. 9. Elevator usage.

Fig. 10. Cumulative occurrences of failed deliveries over simulated time.
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Fig. 11. Cumulative occurrences of unauthorized parking over simulated time.
be beneficial in developing building and parking designs that could
improve current resource allocations in urban cities. Figs. 12 and 13
show Pareto frontiers obtained by using the NSGA II and MOEA/D, re-
spectively. As one can infer from the figures, both algorithms produced
results that were similar (a BWC of between $220 and $250, a DC of
between $8 and $10, and a CWC of between $60 and $150), although
the NSGA II produced extremely high BWC values of between $400 and
$600. We can see that the MOEA/D provided more targeted ranges for
the Pareto frontiers.

Policymakers can choose any point from the Pareto-optimal solu-
tions presented in Figs. 12 and 13 by creating a proper cost distri-
bution strategy. Currently, the exact cost distributions among delivery
workers, building managers, and city planners are unknown and very
complex, as there is no data-driven approach for implementing reg-
ulations for managing building and parking resources in light of the
rapidly growing demand for urban deliveries. Our optimization model
aims to minimize costs for all three parties, preventing biased policies
that could benefit only one or two parties. By comparing the costs of
the alternative solutions, policymakers can consider a broad decision
spectrum and consequently take the advantage of more flexible decision
making.

For example, policymakers may want to reduce a city’s costs more
than those of building managers and delivery workers. In this case,
policymakers can choose the options (one of the dots in the Pareto
frontiers) with a lighter gray color, which represents a low CWC in
Figs. 12 and 13, while increasing other costs for BWC or DC or both.
Our systematic approach to cost distributions can provide flexibility
to policymakers because it considers cost distributions under multiple
objectives.

Policymakers can decide on the appropriate resource allocations
associated with the chosen cost distribution. Each dot in Figs. 12 and
13 represents a certain combination of decision variables. Policymakers
14
could add, remove, or reallocate the building and parking resources to
tailor them to each different Pareto frontier on the basis of their own
policy needs. For example, policymakers may choose the specific dot
that is located inside of the circle indication in Fig. 13. As shown in
Figure, this case is associated with a BWC of $238.8, a DC of $8.3,
and a CWC of $71.6 and the model can inform policymakers that this
particular cost was the result of the combination of one security guard,
two receptionists, four off-street parking spaces, two elevators, and
eight on-street parking spaces.

Our model introduced a data-driven approach that can inform pol-
icymakers as they consider the efforts of the three entities (delivery
workers, building managers, and city planners) working as a team to
better prepare for the future demand of urban goods deliveries in urban
cities.

7. Conclusion

As the rapid growth of urban freight volumes is expected to con-
tinue, policymakers will look for strategies that can balance the supply
and demand of parking and building infrastructure to promote efficient
deliveries. In this study, we aimed to discover the future delivery rates
that would overflow the current delivery systems and find the opti-
mal numbers of resources through a multi-objective, simulation-based
optimization framework.

This framework can ultimately aid decision makers in determining
the building and parking resource allocations that yield the best cost
distributions for delivery workers, building managers, and city plan-
ners. The proposed framework was developed with a simulation phase
and an optimization phase. In the simulation phase, analysis of current
parking and building infrastructure with different delivery arrival rates
was conducted to better understand the dynamics of freight delivery
cost distributions among delivery workers, building managers, and city
planners.
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Fig. 12. Pareto frontiers obtained from the NSGA II. (Population size = 100, crossover = 0.9).
Fig. 13. Pareto frontiers obtained from the MOEA/D. (Population size = 100, number of neighbors = 15).
This was achieved by creating a discrete event simulation model
that simulated the final 50 ft of urban freight activities at an office
building in downtown Seattle, Washington, U.S.A., which consisted of
parking and building resources such as a security guard, receptionists,
off-street parking spaces, elevators, and on-street parking spaces. With
increasing delivery arrival rates, we found that the costs between
delivery workers (increasing — lowest cost at two deliveries per hour)
and building managers (decreasing — lowest cost at 16 deliveries
per hour) were in an inverse relationship. Meanwhile the cost of city
planners decreased up to ten deliveries per hour and then increased.
At 18 deliveries per hour, these cost relationships ended, as the system
became completely blocked by overflowed queues. This resulted in the
cost increases for all three parties. We also observed the most concen-
trated queues at the elevators, which may require the most attention in
designing urban infrastructure with increasing numbers of deliveries.
Unfortunately, there are currently no or few specific regulations on
dedicating certain numbers of elevators to meet future demands for
urban deliveries. We also learned that the current numbers of building
and parking resources were highly underutilized at the current arrival
rate of four deliveries per hour, which was our baseline scenario. This
confirms the lack of consideration for delivery demand in designing
limited urban infrastructure. This also points out the importance of
understanding and analysis of goods deliveries at the final 50 ft.

Once the simulation model with the various delivery rates had
been run, a delivery arrival rate of 12 deliveries per hour was chosen
as reasonable to meet potential near-future delivery demand for our
optimization model. At this fixed delivery rate, we explored the optimal
numbers of building and parking resources that would maximize utility
for all three parties. In the optimization phase, results obtained with
15
two popular, multi-objective optimization algorithms, NSGA II and
MOEA/D, were compared to find the optimized numbers of resources.
Aiming to minimize the costs for multiple parties, our optimization
model provided optimized number combinations for parking and build-
ing resources that were associated with the specific cost distributions
among delivery workers, building managers, and city planners.

The change in land use is known to be one of the factors for
great difference in trip generation. The freight generators such as
commercial and residential land uses are two critical types of land
use in high-density city centers (McDonald and Yuan, 2021). Many
cities require for minimum off-street loading spaces for such land uses.
However, McDonald and Yuan (2021) found that many cities among 20
largest US cities failed to correlate the requirements with freight traffic
demand. Despite the differences in freight trip generation in different
land use, commercial land uses were assigned with the same numbers
of off-street loading zones with very different freight generators in
some cities (McDonald and Yuan, 2021). Also, inadequate attention
is paid to off-street loading spaces for high-density residential land
use. The massive growth in home deliveries with the explosion of
online shopping makes residential land use in desperate need of loading
spaces. However, loading zones for large apartments are often not
required (McDonald and Yuan, 2021).

In contrast, on-street loading zones may response to delivery growth
relatively faster because they can reflect the local businesses’ needs
on-demand. However, city planners must balance those requests with
the use by different transportation users such as buses and passenger
vehicles, preferences of neighboring residents and business owners
and required approvals from multiple city agencies. Hence, sizes and
locations of on-street loading zones cannot be guaranteed, resulting in
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a haphazard manner (McDonald and Yuan, 2021). Commercial vehicle
parking observations in downtown Seattle found that lengths dedicated
to CVLZs are, in fact, different by land use (Girón-Valderrama et al.,
2019). Our simulation model can take a varying number of deliveries
as an input and provide the corresponding cost impacts based on
the utilizations of building and parking resources. In addition, our
optimization models can replicate the existing parking infrastructure’s
varying sizes by resetting the upper limits of resource parameters.
The advantage of our models is mainly based on the discrete delivery
activities which remain similar between different freight generators,
while taking varying parts such as demands and sizes of parking and
building infrastructure as input numbers which can be easily altered in
the models. Therefore, our models can be used and updated based on
the future needs in many organizations.

This study contributed to the policy making process of allocating
building and parking resources by considering three key players in-
volved in urban deliveries: delivery workers, building managers, and
city planners. First, it developed a complex simulation that reflects
complicated final 50 ft of delivery processes and real-world time dis-
tributions. From the simulation model, policymakers can learn how
cost distributions for different parties are related to increasing numbers
of urban deliveries. Second, it applied multi-objective optimization
algorithms to provide insights into possible optimal cases that would
minimize the costs for all three parties.

The proposed framework can support policymakers in determining
the best combination of building and parking resources that can mini-
mize costs. As the proposed framework considers all of the costs for dif-
ferent parties, it enables policymakers to determine the best trade-offs
between the objectives related to these resource allocations. Because
the multi-objective evaluation provides several alternative solutions,
policymakers make decisions within a broad decision spectrum. Addi-
tionally, utilization of optimization algorithms ease the computational
burden of the simulation phase of the proposed framework.

Our study sheds new light on the opportunities for delivery workers,
building managers, and city planners to work together to better prepare
for increased demand for urban deliveries. Our research effort will
continue to integrate the proposed data-driven approach into policy
making procedure. The largest barrier to our research method is to
obtain detailed data on task time distributions and dwell times of
delivery workers at the final 50 ft of delivery activities to construct
and validate a simulation model. The proposed framework can also
be improved by normalizing the costs for each party and by applying
weights to different parties to account for different priorities. For
example, the city may assign higher weights to the city’s costs and may
want to investigate how the relationships with building managers and
delivery workers may change.
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